Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019126302> ?p ?o ?g. }
- W2019126302 endingPage "2245" @default.
- W2019126302 startingPage "2232" @default.
- W2019126302 abstract "Meaningful relationships between forest structure attributes measured in representative field plots on the ground and remotely sensed data measured comprehensively across the same forested landscape facilitate the production of maps of forest attributes such as basal area (BA) and tree density (TD). Because imputation methods can efficiently predict multiple response variables simultaneously, they may be usefully applied to map several structural attributes at the species-level. We compared several approaches for imputing the response variables BA and TD, aggregated at the plot-scale and species-level, from topographic and canopy structure predictor variables derived from discrete-return airborne LiDAR data. The predictor and response variables were associated using imputation techniques based on normalized and unnormalized Euclidean distance, Mahalanobis distance, Independent Component Analysis (ICA), Canonical Correlation Analysis (aka Most Similar Neighbor, or MSN), Canonical Correspondence Analysis (aka Gradient Nearest Neighbor, or GNN), and Random Forest (RF). To compare and evaluate these approaches, we computed a scaled Root Mean Square Distance (RMSD) between observed and imputed plot-level BA and TD for 11 conifer species sampled in north-central Idaho. We found that RF produced the best results overall, especially after reducing the number of response variables to the most important species in each plot with regard to BA and TD. We concluded that RF was the most robust and flexible among the imputation methods we tested. We also concluded that canopy structure and topographic metrics derived from LiDAR surveys can be very useful for species-level imputation." @default.
- W2019126302 created "2016-06-24" @default.
- W2019126302 creator A5011142107 @default.
- W2019126302 creator A5014367967 @default.
- W2019126302 creator A5047877048 @default.
- W2019126302 creator A5055294459 @default.
- W2019126302 creator A5077699288 @default.
- W2019126302 date "2008-05-01" @default.
- W2019126302 modified "2023-10-18" @default.
- W2019126302 title "Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data" @default.
- W2019126302 cites W1968285335 @default.
- W2019126302 cites W1988030515 @default.
- W2019126302 cites W1996938046 @default.
- W2019126302 cites W1998779060 @default.
- W2019126302 cites W2003644107 @default.
- W2019126302 cites W2022704501 @default.
- W2019126302 cites W2025007742 @default.
- W2019126302 cites W2026867377 @default.
- W2019126302 cites W2032771339 @default.
- W2019126302 cites W2033651114 @default.
- W2019126302 cites W2064783587 @default.
- W2019126302 cites W2076481127 @default.
- W2019126302 cites W2078073057 @default.
- W2019126302 cites W2078925105 @default.
- W2019126302 cites W2093830434 @default.
- W2019126302 cites W2095144920 @default.
- W2019126302 cites W2095384379 @default.
- W2019126302 cites W2104998606 @default.
- W2019126302 cites W2109191549 @default.
- W2019126302 cites W2110588562 @default.
- W2019126302 cites W2121942758 @default.
- W2019126302 cites W2123649031 @default.
- W2019126302 cites W2125574854 @default.
- W2019126302 cites W2139049012 @default.
- W2019126302 cites W2144819008 @default.
- W2019126302 cites W2146974384 @default.
- W2019126302 cites W2152515840 @default.
- W2019126302 cites W2155617392 @default.
- W2019126302 cites W2155722785 @default.
- W2019126302 cites W2158161282 @default.
- W2019126302 cites W2162298841 @default.
- W2019126302 cites W2163241395 @default.
- W2019126302 cites W2911964244 @default.
- W2019126302 cites W4229884027 @default.
- W2019126302 cites W2077171284 @default.
- W2019126302 doi "https://doi.org/10.1016/j.rse.2007.10.009" @default.
- W2019126302 hasPublicationYear "2008" @default.
- W2019126302 type Work @default.
- W2019126302 sameAs 2019126302 @default.
- W2019126302 citedByCount "359" @default.
- W2019126302 countsByYear W20191263022012 @default.
- W2019126302 countsByYear W20191263022013 @default.
- W2019126302 countsByYear W20191263022014 @default.
- W2019126302 countsByYear W20191263022015 @default.
- W2019126302 countsByYear W20191263022016 @default.
- W2019126302 countsByYear W20191263022017 @default.
- W2019126302 countsByYear W20191263022018 @default.
- W2019126302 countsByYear W20191263022019 @default.
- W2019126302 countsByYear W20191263022020 @default.
- W2019126302 countsByYear W20191263022021 @default.
- W2019126302 countsByYear W20191263022022 @default.
- W2019126302 countsByYear W20191263022023 @default.
- W2019126302 crossrefType "journal-article" @default.
- W2019126302 hasAuthorship W2019126302A5011142107 @default.
- W2019126302 hasAuthorship W2019126302A5014367967 @default.
- W2019126302 hasAuthorship W2019126302A5047877048 @default.
- W2019126302 hasAuthorship W2019126302A5055294459 @default.
- W2019126302 hasAuthorship W2019126302A5077699288 @default.
- W2019126302 hasBestOaLocation W20191263022 @default.
- W2019126302 hasConcept C105795698 @default.
- W2019126302 hasConcept C113238511 @default.
- W2019126302 hasConcept C154945302 @default.
- W2019126302 hasConcept C167651023 @default.
- W2019126302 hasConcept C205649164 @default.
- W2019126302 hasConcept C2778755073 @default.
- W2019126302 hasConcept C33923547 @default.
- W2019126302 hasConcept C39432304 @default.
- W2019126302 hasConcept C41008148 @default.
- W2019126302 hasConcept C51399673 @default.
- W2019126302 hasConcept C58041806 @default.
- W2019126302 hasConcept C58640448 @default.
- W2019126302 hasConcept C62649853 @default.
- W2019126302 hasConcept C9357733 @default.
- W2019126302 hasConceptScore W2019126302C105795698 @default.
- W2019126302 hasConceptScore W2019126302C113238511 @default.
- W2019126302 hasConceptScore W2019126302C154945302 @default.
- W2019126302 hasConceptScore W2019126302C167651023 @default.
- W2019126302 hasConceptScore W2019126302C205649164 @default.
- W2019126302 hasConceptScore W2019126302C2778755073 @default.
- W2019126302 hasConceptScore W2019126302C33923547 @default.
- W2019126302 hasConceptScore W2019126302C39432304 @default.
- W2019126302 hasConceptScore W2019126302C41008148 @default.
- W2019126302 hasConceptScore W2019126302C51399673 @default.
- W2019126302 hasConceptScore W2019126302C58041806 @default.
- W2019126302 hasConceptScore W2019126302C58640448 @default.
- W2019126302 hasConceptScore W2019126302C62649853 @default.
- W2019126302 hasConceptScore W2019126302C9357733 @default.
- W2019126302 hasIssue "5" @default.