Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019128460> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2019128460 endingPage "3300" @default.
- W2019128460 startingPage "3294" @default.
- W2019128460 abstract "Video image analysis (VIA) images from grain-finished beef carcasses [n = 211; of which 63 did not receive zilpaterol hydrochloride (ZIL) and 148 received ZIL before harvest] were analyzed for indicators of muscle and fat to illustrate the ability to improve methodology to predict saleable meat yield of cattle fed and not fed ZIL. Carcasses were processed in large commercial beef processing facilities and were fabricated into standard subprimals, fat, and bone. Images taken by VIA technology were evaluated using computer image analysis software to quantify fat and lean parameters which were subsequently used in multiple-linear regression models to predict percentage of saleable meat yield for each carcass. Prediction models included variables currently quantified by VIA technology such as LM area (LMA), subcutaneous (SC) fat thickness at 75% the length of the LM (SFT75), and intramuscular fat score (IMF). Additional distance and area measures included LM width (LW), LM depth (LD), iliocostalis muscle area (IA), SC fat thickness at 25, 50, and 100% the length of the LM (SFT25, SFT50, SFT100), SC fat area from 25 to 100% the length of the LM (SCFA), and SC fat area adjacent to the 75% length of the LM from the spinous processes (SCFA75). Multiple ratio and product variables were also created from distance and area measures. For carcasses in this investigation, a 6 variable equation (Adj. R2 = 0.62, MSE = 0.022) was calculated which included coefficients for ZIL treatment, SCFA75, LW, SCFA, SCFA/HCW, and SFT100/HCW. Use of parameters in the U.S. (Adj. R2 = 0.39, MSE = 0.028) and Canadian [Adj. R2 = 0.10, root mean square error (MSE) = 0.034] yield grade equations lack the predictability of the newly adapted equations developed for ZIL-fed and non-ZIL-fed cattle. Prediction equations developed in this study indicate that the use of VIA technology to quantify measurements taken at the 12th/13th rib separation could be used to predict saleable meat yield more accurately than those currently in use by U.S. and Canadian grading systems. Improvement in saleable meat yield prediction has the potential to decrease boxed beef variability via more homogeneous classification of carcass fabrication yield." @default.
- W2019128460 created "2016-06-24" @default.
- W2019128460 creator A5035398129 @default.
- W2019128460 creator A5035462601 @default.
- W2019128460 creator A5048426451 @default.
- W2019128460 date "2012-09-01" @default.
- W2019128460 modified "2023-09-27" @default.
- W2019128460 title "Quantification of Saleable Meat Yield Using Objective Measurements Captured by Video Image Analysis Technology1" @default.
- W2019128460 cites W1973075003 @default.
- W2019128460 cites W1974281105 @default.
- W2019128460 cites W2017189320 @default.
- W2019128460 cites W2040710601 @default.
- W2019128460 cites W2047267806 @default.
- W2019128460 cites W2052609443 @default.
- W2019128460 cites W2054126725 @default.
- W2019128460 cites W2062473544 @default.
- W2019128460 cites W2104880742 @default.
- W2019128460 cites W2402843596 @default.
- W2019128460 cites W2410807458 @default.
- W2019128460 cites W2425811947 @default.
- W2019128460 cites W6345313 @default.
- W2019128460 cites W76659167 @default.
- W2019128460 doi "https://doi.org/10.2527/jas.2011-4223" @default.
- W2019128460 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22966082" @default.
- W2019128460 hasPublicationYear "2012" @default.
- W2019128460 type Work @default.
- W2019128460 sameAs 2019128460 @default.
- W2019128460 citedByCount "6" @default.
- W2019128460 countsByYear W20191284602013 @default.
- W2019128460 countsByYear W20191284602014 @default.
- W2019128460 countsByYear W20191284602020 @default.
- W2019128460 countsByYear W20191284602021 @default.
- W2019128460 countsByYear W20191284602022 @default.
- W2019128460 countsByYear W20191284602023 @default.
- W2019128460 crossrefType "journal-article" @default.
- W2019128460 hasAuthorship W2019128460A5035398129 @default.
- W2019128460 hasAuthorship W2019128460A5035462601 @default.
- W2019128460 hasAuthorship W2019128460A5048426451 @default.
- W2019128460 hasConcept C105795698 @default.
- W2019128460 hasConcept C126322002 @default.
- W2019128460 hasConcept C140793950 @default.
- W2019128460 hasConcept C150903083 @default.
- W2019128460 hasConcept C152877465 @default.
- W2019128460 hasConcept C171089720 @default.
- W2019128460 hasConcept C2776635132 @default.
- W2019128460 hasConcept C2777391703 @default.
- W2019128460 hasConcept C2779306644 @default.
- W2019128460 hasConcept C2992853932 @default.
- W2019128460 hasConcept C3017631923 @default.
- W2019128460 hasConcept C3018861615 @default.
- W2019128460 hasConcept C3020796190 @default.
- W2019128460 hasConcept C31903555 @default.
- W2019128460 hasConcept C33923547 @default.
- W2019128460 hasConcept C48921125 @default.
- W2019128460 hasConcept C7150383 @default.
- W2019128460 hasConcept C71924100 @default.
- W2019128460 hasConcept C86803240 @default.
- W2019128460 hasConceptScore W2019128460C105795698 @default.
- W2019128460 hasConceptScore W2019128460C126322002 @default.
- W2019128460 hasConceptScore W2019128460C140793950 @default.
- W2019128460 hasConceptScore W2019128460C150903083 @default.
- W2019128460 hasConceptScore W2019128460C152877465 @default.
- W2019128460 hasConceptScore W2019128460C171089720 @default.
- W2019128460 hasConceptScore W2019128460C2776635132 @default.
- W2019128460 hasConceptScore W2019128460C2777391703 @default.
- W2019128460 hasConceptScore W2019128460C2779306644 @default.
- W2019128460 hasConceptScore W2019128460C2992853932 @default.
- W2019128460 hasConceptScore W2019128460C3017631923 @default.
- W2019128460 hasConceptScore W2019128460C3018861615 @default.
- W2019128460 hasConceptScore W2019128460C3020796190 @default.
- W2019128460 hasConceptScore W2019128460C31903555 @default.
- W2019128460 hasConceptScore W2019128460C33923547 @default.
- W2019128460 hasConceptScore W2019128460C48921125 @default.
- W2019128460 hasConceptScore W2019128460C7150383 @default.
- W2019128460 hasConceptScore W2019128460C71924100 @default.
- W2019128460 hasConceptScore W2019128460C86803240 @default.
- W2019128460 hasIssue "9" @default.
- W2019128460 hasLocation W20191284601 @default.
- W2019128460 hasLocation W20191284602 @default.
- W2019128460 hasOpenAccess W2019128460 @default.
- W2019128460 hasPrimaryLocation W20191284601 @default.
- W2019128460 hasRelatedWork W1759754055 @default.
- W2019128460 hasRelatedWork W2019128460 @default.
- W2019128460 hasRelatedWork W2045032218 @default.
- W2019128460 hasRelatedWork W2059685920 @default.
- W2019128460 hasRelatedWork W2085164157 @default.
- W2019128460 hasRelatedWork W2228792360 @default.
- W2019128460 hasRelatedWork W2288526227 @default.
- W2019128460 hasRelatedWork W2356163678 @default.
- W2019128460 hasRelatedWork W643946636 @default.
- W2019128460 hasRelatedWork W828121289 @default.
- W2019128460 hasVolume "90" @default.
- W2019128460 isParatext "false" @default.
- W2019128460 isRetracted "false" @default.
- W2019128460 magId "2019128460" @default.
- W2019128460 workType "article" @default.