Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019136910> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2019136910 endingPage "1224" @default.
- W2019136910 startingPage "1213" @default.
- W2019136910 abstract "Abstract An optimization methodology based on neural networks and genetic algorithms was developed and used to optimize a real world process — an electro-coagulation process involving three pollutants at different concentrations: kaolin (250–1000 mg L−1), Eriochrome Black T solutions (50–200 mg L−1), and oil/water emulsion (1500–4500 mg L−1). Feed-forward neural networks using heterogeneous combination of transfer functions were developed, leading to good results in the validation stage (relative error about 8%). The parameters of the process (concentration of pollutant, time, pH0, conductivity and current density) were optimized handling the genetic algorithm parameters, in order to obtain a maximum removal efficiency for each pollutant. Therefore, the optimization methodology combines neural networks as modeling tools with genetic algorithms as solving method. Validation of the optimization results using supplementary experimental data reveals errors under 11%." @default.
- W2019136910 created "2016-06-24" @default.
- W2019136910 creator A5029241241 @default.
- W2019136910 creator A5030829541 @default.
- W2019136910 creator A5044427154 @default.
- W2019136910 creator A5074307210 @default.
- W2019136910 creator A5082397403 @default.
- W2019136910 date "2013-04-26" @default.
- W2019136910 modified "2023-10-09" @default.
- W2019136910 title "Optimization methodology based on neural networks and genetic algorithms applied to electro-coagulation processes" @default.
- W2019136910 cites W1927181533 @default.
- W2019136910 cites W1965088423 @default.
- W2019136910 cites W1965837007 @default.
- W2019136910 cites W1969548085 @default.
- W2019136910 cites W1973996862 @default.
- W2019136910 cites W1982442387 @default.
- W2019136910 cites W1991099106 @default.
- W2019136910 cites W2000049691 @default.
- W2019136910 cites W2011723902 @default.
- W2019136910 cites W2019774363 @default.
- W2019136910 cites W2036265573 @default.
- W2019136910 cites W2065015051 @default.
- W2019136910 cites W2065919222 @default.
- W2019136910 cites W2070069664 @default.
- W2019136910 cites W2071989670 @default.
- W2019136910 cites W2073799974 @default.
- W2019136910 cites W2073891474 @default.
- W2019136910 cites W2074047351 @default.
- W2019136910 cites W2074413688 @default.
- W2019136910 cites W2077959424 @default.
- W2019136910 cites W2083454591 @default.
- W2019136910 cites W2083844448 @default.
- W2019136910 cites W2086668221 @default.
- W2019136910 cites W2136598651 @default.
- W2019136910 cites W2136677599 @default.
- W2019136910 cites W2151984686 @default.
- W2019136910 cites W2158963982 @default.
- W2019136910 cites W2185327253 @default.
- W2019136910 cites W2336521431 @default.
- W2019136910 cites W46164927 @default.
- W2019136910 doi "https://doi.org/10.2478/s11532-013-0253-0" @default.
- W2019136910 hasPublicationYear "2013" @default.
- W2019136910 type Work @default.
- W2019136910 sameAs 2019136910 @default.
- W2019136910 citedByCount "5" @default.
- W2019136910 countsByYear W20191369102015 @default.
- W2019136910 countsByYear W20191369102019 @default.
- W2019136910 countsByYear W20191369102020 @default.
- W2019136910 countsByYear W20191369102021 @default.
- W2019136910 crossrefType "journal-article" @default.
- W2019136910 hasAuthorship W2019136910A5029241241 @default.
- W2019136910 hasAuthorship W2019136910A5030829541 @default.
- W2019136910 hasAuthorship W2019136910A5044427154 @default.
- W2019136910 hasAuthorship W2019136910A5074307210 @default.
- W2019136910 hasAuthorship W2019136910A5082397403 @default.
- W2019136910 hasBestOaLocation W20191369101 @default.
- W2019136910 hasConcept C111919701 @default.
- W2019136910 hasConcept C11413529 @default.
- W2019136910 hasConcept C118552586 @default.
- W2019136910 hasConcept C119857082 @default.
- W2019136910 hasConcept C15744967 @default.
- W2019136910 hasConcept C2778382381 @default.
- W2019136910 hasConcept C41008148 @default.
- W2019136910 hasConcept C50644808 @default.
- W2019136910 hasConcept C8880873 @default.
- W2019136910 hasConcept C98045186 @default.
- W2019136910 hasConceptScore W2019136910C111919701 @default.
- W2019136910 hasConceptScore W2019136910C11413529 @default.
- W2019136910 hasConceptScore W2019136910C118552586 @default.
- W2019136910 hasConceptScore W2019136910C119857082 @default.
- W2019136910 hasConceptScore W2019136910C15744967 @default.
- W2019136910 hasConceptScore W2019136910C2778382381 @default.
- W2019136910 hasConceptScore W2019136910C41008148 @default.
- W2019136910 hasConceptScore W2019136910C50644808 @default.
- W2019136910 hasConceptScore W2019136910C8880873 @default.
- W2019136910 hasConceptScore W2019136910C98045186 @default.
- W2019136910 hasIssue "7" @default.
- W2019136910 hasLocation W20191369101 @default.
- W2019136910 hasLocation W20191369102 @default.
- W2019136910 hasOpenAccess W2019136910 @default.
- W2019136910 hasPrimaryLocation W20191369101 @default.
- W2019136910 hasRelatedWork W2354205711 @default.
- W2019136910 hasRelatedWork W2356583712 @default.
- W2019136910 hasRelatedWork W2360006733 @default.
- W2019136910 hasRelatedWork W2366368367 @default.
- W2019136910 hasRelatedWork W2366584243 @default.
- W2019136910 hasRelatedWork W2372415543 @default.
- W2019136910 hasRelatedWork W2376563992 @default.
- W2019136910 hasRelatedWork W2377292223 @default.
- W2019136910 hasRelatedWork W2808717917 @default.
- W2019136910 hasRelatedWork W4304590249 @default.
- W2019136910 hasVolume "11" @default.
- W2019136910 isParatext "false" @default.
- W2019136910 isRetracted "false" @default.
- W2019136910 magId "2019136910" @default.
- W2019136910 workType "article" @default.