Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019147941> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2019147941 abstract "It is very important to know how fast a BDI agent can react to and process incoming event sequences if we want to apply such autonomous agents into time-sensitive applications like the Close-In weapon system in air-carriers. In, we proposed an analysis method for traditional sequential agents. In this paper we extend the theoretical analysis method to parallel BDI agents. Our method can estimate the average response time using the average attributes of a sequence of events based on probability and queueing theory. The simulation experiments show that our theoretical analysis method is effective. We also show by an experiment that an agent that dynamically allocates its computational time resources perform better than one that does not. Thus, the theoretical method suggests a way to quickly estimate the performance of an agent if the average attributes of the incoming event sequence are known in advance. Such an analysis of average response time can definitely benefit constructing more efficient BDI agents that situate in time-sensitive environments." @default.
- W2019147941 created "2016-06-24" @default.
- W2019147941 creator A5030600444 @default.
- W2019147941 creator A5045767575 @default.
- W2019147941 creator A5057170852 @default.
- W2019147941 creator A5062379464 @default.
- W2019147941 creator A5063713222 @default.
- W2019147941 date "2010-08-01" @default.
- W2019147941 modified "2023-09-28" @default.
- W2019147941 title "How Fast Can a BDI Agent Respond?" @default.
- W2019147941 cites W1489424561 @default.
- W2019147941 cites W1533638164 @default.
- W2019147941 cites W1544123977 @default.
- W2019147941 cites W1578573078 @default.
- W2019147941 cites W1587981124 @default.
- W2019147941 cites W1598032555 @default.
- W2019147941 cites W1777709674 @default.
- W2019147941 cites W2034172416 @default.
- W2019147941 cites W2036190613 @default.
- W2019147941 cites W2118244567 @default.
- W2019147941 cites W2130766754 @default.
- W2019147941 cites W2152530926 @default.
- W2019147941 cites W2167138846 @default.
- W2019147941 cites W2482329843 @default.
- W2019147941 cites W2540658263 @default.
- W2019147941 doi "https://doi.org/10.1109/wi-iat.2010.248" @default.
- W2019147941 hasPublicationYear "2010" @default.
- W2019147941 type Work @default.
- W2019147941 sameAs 2019147941 @default.
- W2019147941 citedByCount "3" @default.
- W2019147941 countsByYear W20191479412014 @default.
- W2019147941 countsByYear W20191479412019 @default.
- W2019147941 crossrefType "proceedings-article" @default.
- W2019147941 hasAuthorship W2019147941A5030600444 @default.
- W2019147941 hasAuthorship W2019147941A5045767575 @default.
- W2019147941 hasAuthorship W2019147941A5057170852 @default.
- W2019147941 hasAuthorship W2019147941A5062379464 @default.
- W2019147941 hasAuthorship W2019147941A5063713222 @default.
- W2019147941 hasConcept C111919701 @default.
- W2019147941 hasConcept C120314980 @default.
- W2019147941 hasConcept C121332964 @default.
- W2019147941 hasConcept C154945302 @default.
- W2019147941 hasConcept C22684755 @default.
- W2019147941 hasConcept C2778112365 @default.
- W2019147941 hasConcept C2779662365 @default.
- W2019147941 hasConcept C3020136221 @default.
- W2019147941 hasConcept C31258907 @default.
- W2019147941 hasConcept C41008148 @default.
- W2019147941 hasConcept C41550386 @default.
- W2019147941 hasConcept C54355233 @default.
- W2019147941 hasConcept C62520636 @default.
- W2019147941 hasConcept C86803240 @default.
- W2019147941 hasConcept C98045186 @default.
- W2019147941 hasConceptScore W2019147941C111919701 @default.
- W2019147941 hasConceptScore W2019147941C120314980 @default.
- W2019147941 hasConceptScore W2019147941C121332964 @default.
- W2019147941 hasConceptScore W2019147941C154945302 @default.
- W2019147941 hasConceptScore W2019147941C22684755 @default.
- W2019147941 hasConceptScore W2019147941C2778112365 @default.
- W2019147941 hasConceptScore W2019147941C2779662365 @default.
- W2019147941 hasConceptScore W2019147941C3020136221 @default.
- W2019147941 hasConceptScore W2019147941C31258907 @default.
- W2019147941 hasConceptScore W2019147941C41008148 @default.
- W2019147941 hasConceptScore W2019147941C41550386 @default.
- W2019147941 hasConceptScore W2019147941C54355233 @default.
- W2019147941 hasConceptScore W2019147941C62520636 @default.
- W2019147941 hasConceptScore W2019147941C86803240 @default.
- W2019147941 hasConceptScore W2019147941C98045186 @default.
- W2019147941 hasLocation W20191479411 @default.
- W2019147941 hasOpenAccess W2019147941 @default.
- W2019147941 hasPrimaryLocation W20191479411 @default.
- W2019147941 hasRelatedWork W152016706 @default.
- W2019147941 hasRelatedWork W1529401561 @default.
- W2019147941 hasRelatedWork W1542653852 @default.
- W2019147941 hasRelatedWork W1599344755 @default.
- W2019147941 hasRelatedWork W1603321854 @default.
- W2019147941 hasRelatedWork W174468873 @default.
- W2019147941 hasRelatedWork W1987624210 @default.
- W2019147941 hasRelatedWork W2039246036 @default.
- W2019147941 hasRelatedWork W2062552941 @default.
- W2019147941 hasRelatedWork W2065942017 @default.
- W2019147941 hasRelatedWork W2082315935 @default.
- W2019147941 hasRelatedWork W2096452582 @default.
- W2019147941 hasRelatedWork W2107530489 @default.
- W2019147941 hasRelatedWork W2135847932 @default.
- W2019147941 hasRelatedWork W2149095675 @default.
- W2019147941 hasRelatedWork W2158940585 @default.
- W2019147941 hasRelatedWork W2170649026 @default.
- W2019147941 hasRelatedWork W2406361119 @default.
- W2019147941 hasRelatedWork W31224369 @default.
- W2019147941 hasRelatedWork W1715013469 @default.
- W2019147941 isParatext "false" @default.
- W2019147941 isRetracted "false" @default.
- W2019147941 magId "2019147941" @default.
- W2019147941 workType "article" @default.