Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019164294> ?p ?o ?g. }
- W2019164294 abstract "Abstract Image data can be acquired from a product surface in real time by image sensor systems in chemical plants. For quality determination based on these image datasets, effective texture classification methodology is essential to handle highly dimensional images and to extract quality-related information from these product surface images. Wavelet texture analysis is useful for reducing the dimension and extracting textural information from images. Although wavelet texture analysis extracts only textural characteristics from images, the extracted features still contain unnecessary information for classification. The texture analysis method can be improved by retaining only class-dependent features and removing common features. In previous works, best basis and local discriminant basis are the most popular techniques for selecting an important basis from the wavelet packet basis. However, feature selection based on wavelet texture analysis has been studied for texture classification. Because previous methods are designed for wavelet coefficients with features for analysis, their performance is poor with wavelet texture analysis. We propose a novel texture classification methodology for quality determination based on feature selection using wavelet texture analysis. The proposed methodology applies the sequential forward floating selection (SFFS) algorithm as a feature selection strategy to select discriminating wavelet signatures using wavelet texture analysis. The proposed methodology is validated through quality determination for industrial steel surfaces. The results show that the proposed method has fewer classification errors with fewer number of features than previous methods." @default.
- W2019164294 created "2016-06-24" @default.
- W2019164294 creator A5062092596 @default.
- W2019164294 creator A5073007816 @default.
- W2019164294 creator A5082871557 @default.
- W2019164294 date "2011-12-01" @default.
- W2019164294 modified "2023-09-28" @default.
- W2019164294 title "Determination of steel quality based on discriminating textural feature selection" @default.
- W2019164294 cites W130679922 @default.
- W2019164294 cites W1801849579 @default.
- W2019164294 cites W1972738875 @default.
- W2019164294 cites W1987216676 @default.
- W2019164294 cites W1997047867 @default.
- W2019164294 cites W1997182903 @default.
- W2019164294 cites W2000000007 @default.
- W2019164294 cites W2003219882 @default.
- W2019164294 cites W2008729476 @default.
- W2019164294 cites W2014915963 @default.
- W2019164294 cites W2016015604 @default.
- W2019164294 cites W2035071469 @default.
- W2019164294 cites W2050477874 @default.
- W2019164294 cites W2060150799 @default.
- W2019164294 cites W2061431094 @default.
- W2019164294 cites W2065231433 @default.
- W2019164294 cites W2066864079 @default.
- W2019164294 cites W2078945280 @default.
- W2019164294 cites W2096127742 @default.
- W2019164294 cites W2107236511 @default.
- W2019164294 cites W2107693148 @default.
- W2019164294 cites W2111882872 @default.
- W2019164294 cites W2138583748 @default.
- W2019164294 cites W2156447271 @default.
- W2019164294 cites W2161943337 @default.
- W2019164294 cites W2163875444 @default.
- W2019164294 cites W2168977926 @default.
- W2019164294 cites W2169271980 @default.
- W2019164294 cites W2169347809 @default.
- W2019164294 cites W39398671 @default.
- W2019164294 cites W4235414279 @default.
- W2019164294 cites W4249014736 @default.
- W2019164294 doi "https://doi.org/10.1016/j.ces.2011.09.004" @default.
- W2019164294 hasPublicationYear "2011" @default.
- W2019164294 type Work @default.
- W2019164294 sameAs 2019164294 @default.
- W2019164294 citedByCount "10" @default.
- W2019164294 countsByYear W20191642942013 @default.
- W2019164294 countsByYear W20191642942014 @default.
- W2019164294 countsByYear W20191642942016 @default.
- W2019164294 countsByYear W20191642942017 @default.
- W2019164294 countsByYear W20191642942018 @default.
- W2019164294 countsByYear W20191642942020 @default.
- W2019164294 countsByYear W20191642942022 @default.
- W2019164294 crossrefType "journal-article" @default.
- W2019164294 hasAuthorship W2019164294A5062092596 @default.
- W2019164294 hasAuthorship W2019164294A5073007816 @default.
- W2019164294 hasAuthorship W2019164294A5082871557 @default.
- W2019164294 hasConcept C115961682 @default.
- W2019164294 hasConcept C12426560 @default.
- W2019164294 hasConcept C138885662 @default.
- W2019164294 hasConcept C148483581 @default.
- W2019164294 hasConcept C153180895 @default.
- W2019164294 hasConcept C154945302 @default.
- W2019164294 hasConcept C155777637 @default.
- W2019164294 hasConcept C196216189 @default.
- W2019164294 hasConcept C2524010 @default.
- W2019164294 hasConcept C2776401178 @default.
- W2019164294 hasConcept C2781195486 @default.
- W2019164294 hasConcept C31972630 @default.
- W2019164294 hasConcept C33923547 @default.
- W2019164294 hasConcept C41008148 @default.
- W2019164294 hasConcept C41895202 @default.
- W2019164294 hasConcept C47432892 @default.
- W2019164294 hasConcept C52622490 @default.
- W2019164294 hasConcept C63099799 @default.
- W2019164294 hasConcept C69738355 @default.
- W2019164294 hasConcept C9417928 @default.
- W2019164294 hasConceptScore W2019164294C115961682 @default.
- W2019164294 hasConceptScore W2019164294C12426560 @default.
- W2019164294 hasConceptScore W2019164294C138885662 @default.
- W2019164294 hasConceptScore W2019164294C148483581 @default.
- W2019164294 hasConceptScore W2019164294C153180895 @default.
- W2019164294 hasConceptScore W2019164294C154945302 @default.
- W2019164294 hasConceptScore W2019164294C155777637 @default.
- W2019164294 hasConceptScore W2019164294C196216189 @default.
- W2019164294 hasConceptScore W2019164294C2524010 @default.
- W2019164294 hasConceptScore W2019164294C2776401178 @default.
- W2019164294 hasConceptScore W2019164294C2781195486 @default.
- W2019164294 hasConceptScore W2019164294C31972630 @default.
- W2019164294 hasConceptScore W2019164294C33923547 @default.
- W2019164294 hasConceptScore W2019164294C41008148 @default.
- W2019164294 hasConceptScore W2019164294C41895202 @default.
- W2019164294 hasConceptScore W2019164294C47432892 @default.
- W2019164294 hasConceptScore W2019164294C52622490 @default.
- W2019164294 hasConceptScore W2019164294C63099799 @default.
- W2019164294 hasConceptScore W2019164294C69738355 @default.
- W2019164294 hasConceptScore W2019164294C9417928 @default.
- W2019164294 hasLocation W20191642941 @default.
- W2019164294 hasOpenAccess W2019164294 @default.
- W2019164294 hasPrimaryLocation W20191642941 @default.
- W2019164294 hasRelatedWork W166844522 @default.