Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019177712> ?p ?o ?g. }
- W2019177712 endingPage "4632" @default.
- W2019177712 startingPage "4605" @default.
- W2019177712 abstract "Environmental monitoring is evolving towards large-scale and low-cost sensor networks operating reliability and autonomously over extended periods of time. Sophisticated analytical instrumentation such as chemo-bio sensors present inherent limitations because of the number of samples that they can take. In order to maximize their deployment lifetime, we propose the coordination of multiple heterogeneous information sources. We use rainfall radar images and information from a water depth sensor as input to a neural network (NN) to dictate the sampling frequency of a phosphate analyzer at the River Lee in Cork, Ireland. This approach shows varied performance for different times of the year but overall produces output that is very satisfactory for the application context in question. Our study demonstrates that even with limited training data, a system for controlling the sampling rate of the nutrient sensor can be set up and can improve the efficiency of the more sophisticated nodes of the sensor network." @default.
- W2019177712 created "2016-06-24" @default.
- W2019177712 creator A5020404434 @default.
- W2019177712 creator A5068280279 @default.
- W2019177712 creator A5076638101 @default.
- W2019177712 creator A5081902636 @default.
- W2019177712 date "2012-04-10" @default.
- W2019177712 modified "2023-10-05" @default.
- W2019177712 title "A Neural Network Approach to Smarter Sensor Networks for Water Quality Monitoring" @default.
- W2019177712 cites W1975687263 @default.
- W2019177712 cites W1998442441 @default.
- W2019177712 cites W2002349979 @default.
- W2019177712 cites W2011960082 @default.
- W2019177712 cites W2013117405 @default.
- W2019177712 cites W2015092216 @default.
- W2019177712 cites W2017198208 @default.
- W2019177712 cites W2017587036 @default.
- W2019177712 cites W2018750102 @default.
- W2019177712 cites W2019451733 @default.
- W2019177712 cites W2023567628 @default.
- W2019177712 cites W2026956908 @default.
- W2019177712 cites W2027924754 @default.
- W2019177712 cites W2031292142 @default.
- W2019177712 cites W2034498581 @default.
- W2019177712 cites W2037484226 @default.
- W2019177712 cites W2057788866 @default.
- W2019177712 cites W2083803671 @default.
- W2019177712 cites W2090157291 @default.
- W2019177712 cites W2093457913 @default.
- W2019177712 cites W2106410717 @default.
- W2019177712 cites W2114824684 @default.
- W2019177712 cites W2131047005 @default.
- W2019177712 cites W2133990480 @default.
- W2019177712 cites W2150628003 @default.
- W2019177712 cites W2397809507 @default.
- W2019177712 cites W4211007335 @default.
- W2019177712 doi "https://doi.org/10.3390/s120404605" @default.
- W2019177712 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3355430" @default.
- W2019177712 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22666048" @default.
- W2019177712 hasPublicationYear "2012" @default.
- W2019177712 type Work @default.
- W2019177712 sameAs 2019177712 @default.
- W2019177712 citedByCount "27" @default.
- W2019177712 countsByYear W20191777122012 @default.
- W2019177712 countsByYear W20191777122013 @default.
- W2019177712 countsByYear W20191777122014 @default.
- W2019177712 countsByYear W20191777122015 @default.
- W2019177712 countsByYear W20191777122016 @default.
- W2019177712 countsByYear W20191777122017 @default.
- W2019177712 countsByYear W20191777122018 @default.
- W2019177712 countsByYear W20191777122019 @default.
- W2019177712 countsByYear W20191777122020 @default.
- W2019177712 countsByYear W20191777122021 @default.
- W2019177712 countsByYear W20191777122022 @default.
- W2019177712 countsByYear W20191777122023 @default.
- W2019177712 crossrefType "journal-article" @default.
- W2019177712 hasAuthorship W2019177712A5020404434 @default.
- W2019177712 hasAuthorship W2019177712A5068280279 @default.
- W2019177712 hasAuthorship W2019177712A5076638101 @default.
- W2019177712 hasAuthorship W2019177712A5081902636 @default.
- W2019177712 hasBestOaLocation W20191777121 @default.
- W2019177712 hasConcept C105339364 @default.
- W2019177712 hasConcept C111919701 @default.
- W2019177712 hasConcept C118530786 @default.
- W2019177712 hasConcept C121332964 @default.
- W2019177712 hasConcept C124101348 @default.
- W2019177712 hasConcept C140779682 @default.
- W2019177712 hasConcept C151730666 @default.
- W2019177712 hasConcept C154945302 @default.
- W2019177712 hasConcept C163258240 @default.
- W2019177712 hasConcept C177264268 @default.
- W2019177712 hasConcept C199360897 @default.
- W2019177712 hasConcept C24590314 @default.
- W2019177712 hasConcept C2779343474 @default.
- W2019177712 hasConcept C31258907 @default.
- W2019177712 hasConcept C41008148 @default.
- W2019177712 hasConcept C43214815 @default.
- W2019177712 hasConcept C50644808 @default.
- W2019177712 hasConcept C62520636 @default.
- W2019177712 hasConcept C76155785 @default.
- W2019177712 hasConcept C79403827 @default.
- W2019177712 hasConcept C86803240 @default.
- W2019177712 hasConcept C94915269 @default.
- W2019177712 hasConceptScore W2019177712C105339364 @default.
- W2019177712 hasConceptScore W2019177712C111919701 @default.
- W2019177712 hasConceptScore W2019177712C118530786 @default.
- W2019177712 hasConceptScore W2019177712C121332964 @default.
- W2019177712 hasConceptScore W2019177712C124101348 @default.
- W2019177712 hasConceptScore W2019177712C140779682 @default.
- W2019177712 hasConceptScore W2019177712C151730666 @default.
- W2019177712 hasConceptScore W2019177712C154945302 @default.
- W2019177712 hasConceptScore W2019177712C163258240 @default.
- W2019177712 hasConceptScore W2019177712C177264268 @default.
- W2019177712 hasConceptScore W2019177712C199360897 @default.
- W2019177712 hasConceptScore W2019177712C24590314 @default.
- W2019177712 hasConceptScore W2019177712C2779343474 @default.
- W2019177712 hasConceptScore W2019177712C31258907 @default.
- W2019177712 hasConceptScore W2019177712C41008148 @default.