Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019179799> ?p ?o ?g. }
- W2019179799 endingPage "154" @default.
- W2019179799 startingPage "129" @default.
- W2019179799 abstract "Approximating distributions over strings is a hard learning problem. Typical techniques involve using finite state machines as models and attempting to learn these; these machines can either be hand built and then have their weights estimated, or built by grammatical inference techniques: the structure and the weights are then learned simultaneously. The Probabilistic Automata learning Competition (PAutomaC), run in 2012, was the first grammatical inference challenge that allowed the comparison between these methods and algorithms. Its main goal was to provide an overview of the state-of-the-art techniques for this hard learning problem. Both artificial data and real data were presented and contestants were to try to estimate the probabilities of strings. The purpose of this paper is to describe some of the technical and intrinsic challenges such a competition has to face, to give a broad state of the art concerning both the problems dealing with learning grammars and finite state machines and the relevant literature. This paper also provides the results of the competition and a brief description and analysis of the different approaches the main participants used." @default.
- W2019179799 created "2016-06-24" @default.
- W2019179799 creator A5036569886 @default.
- W2019179799 creator A5056300285 @default.
- W2019179799 creator A5062870071 @default.
- W2019179799 date "2013-10-03" @default.
- W2019179799 modified "2023-10-09" @default.
- W2019179799 title "PAutomaC: a probabilistic automata and hidden Markov models learning competition" @default.
- W2019179799 cites W1497026191 @default.
- W2019179799 cites W1508155761 @default.
- W2019179799 cites W1520252399 @default.
- W2019179799 cites W1543335880 @default.
- W2019179799 cites W1551871633 @default.
- W2019179799 cites W1559171143 @default.
- W2019179799 cites W1560635010 @default.
- W2019179799 cites W1965555277 @default.
- W2019179799 cites W1966424967 @default.
- W2019179799 cites W1972594981 @default.
- W2019179799 cites W1974713491 @default.
- W2019179799 cites W2001179000 @default.
- W2019179799 cites W2004929506 @default.
- W2019179799 cites W2050570613 @default.
- W2019179799 cites W2083875149 @default.
- W2019179799 cites W2086699924 @default.
- W2019179799 cites W2095374884 @default.
- W2019179799 cites W2099111195 @default.
- W2019179799 cites W2122092249 @default.
- W2019179799 cites W2125838338 @default.
- W2019179799 cites W2127498532 @default.
- W2019179799 cites W2130725968 @default.
- W2019179799 cites W2132902234 @default.
- W2019179799 cites W2135090412 @default.
- W2019179799 cites W2140606869 @default.
- W2019179799 cites W2166044723 @default.
- W2019179799 cites W2585699338 @default.
- W2019179799 cites W2788466166 @default.
- W2019179799 cites W3123545922 @default.
- W2019179799 cites W4241372395 @default.
- W2019179799 cites W4248402004 @default.
- W2019179799 cites W4252836795 @default.
- W2019179799 doi "https://doi.org/10.1007/s10994-013-5409-9" @default.
- W2019179799 hasPublicationYear "2013" @default.
- W2019179799 type Work @default.
- W2019179799 sameAs 2019179799 @default.
- W2019179799 citedByCount "33" @default.
- W2019179799 countsByYear W20191797992014 @default.
- W2019179799 countsByYear W20191797992015 @default.
- W2019179799 countsByYear W20191797992016 @default.
- W2019179799 countsByYear W20191797992017 @default.
- W2019179799 countsByYear W20191797992018 @default.
- W2019179799 countsByYear W20191797992019 @default.
- W2019179799 countsByYear W20191797992020 @default.
- W2019179799 countsByYear W20191797992021 @default.
- W2019179799 countsByYear W20191797992023 @default.
- W2019179799 crossrefType "journal-article" @default.
- W2019179799 hasAuthorship W2019179799A5036569886 @default.
- W2019179799 hasAuthorship W2019179799A5056300285 @default.
- W2019179799 hasAuthorship W2019179799A5062870071 @default.
- W2019179799 hasBestOaLocation W20191797991 @default.
- W2019179799 hasConcept C112505250 @default.
- W2019179799 hasConcept C11413529 @default.
- W2019179799 hasConcept C119857082 @default.
- W2019179799 hasConcept C154945302 @default.
- W2019179799 hasConcept C167822520 @default.
- W2019179799 hasConcept C18903297 @default.
- W2019179799 hasConcept C2776214188 @default.
- W2019179799 hasConcept C2776807809 @default.
- W2019179799 hasConcept C41008148 @default.
- W2019179799 hasConcept C49937458 @default.
- W2019179799 hasConcept C53893814 @default.
- W2019179799 hasConcept C56601403 @default.
- W2019179799 hasConcept C80444323 @default.
- W2019179799 hasConcept C86803240 @default.
- W2019179799 hasConcept C91306197 @default.
- W2019179799 hasConcept C98763669 @default.
- W2019179799 hasConceptScore W2019179799C112505250 @default.
- W2019179799 hasConceptScore W2019179799C11413529 @default.
- W2019179799 hasConceptScore W2019179799C119857082 @default.
- W2019179799 hasConceptScore W2019179799C154945302 @default.
- W2019179799 hasConceptScore W2019179799C167822520 @default.
- W2019179799 hasConceptScore W2019179799C18903297 @default.
- W2019179799 hasConceptScore W2019179799C2776214188 @default.
- W2019179799 hasConceptScore W2019179799C2776807809 @default.
- W2019179799 hasConceptScore W2019179799C41008148 @default.
- W2019179799 hasConceptScore W2019179799C49937458 @default.
- W2019179799 hasConceptScore W2019179799C53893814 @default.
- W2019179799 hasConceptScore W2019179799C56601403 @default.
- W2019179799 hasConceptScore W2019179799C80444323 @default.
- W2019179799 hasConceptScore W2019179799C86803240 @default.
- W2019179799 hasConceptScore W2019179799C91306197 @default.
- W2019179799 hasConceptScore W2019179799C98763669 @default.
- W2019179799 hasIssue "1-2" @default.
- W2019179799 hasLocation W20191797991 @default.
- W2019179799 hasLocation W20191797992 @default.
- W2019179799 hasLocation W20191797993 @default.
- W2019179799 hasLocation W20191797994 @default.
- W2019179799 hasLocation W20191797995 @default.
- W2019179799 hasLocation W20191797996 @default.