Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019201733> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2019201733 abstract "Heterogeneous information networks are pervasive in applications ranging from bioinformatics to e-commerce. As a result, unsupervised learning and clustering methods pertaining to such networks have gained significant attention recently. Nodes in a heterogeneous information network are regarded as objects derived from distinct domains such as 'authors' and 'papers'. In many cases, feature sets characterizing the objects are not available, hence, clustering of the objects depends solely on the links and relationships amongst objects. Although several previous studies have addressed information network clustering, shortcomings remain. First, the definition of what constitutes an information network cluster varies drastically from study to study. Second, previous algorithms have generally focused on non-overlapping clusters, while many algorithms are also limited to specific network topologies. In this paper we introduce a game theoretic framework (GHIN) for defining and mining clusters in heterogeneous information networks. The clustering problem is modeled as a game wherein each domain represents a player and clusters are defined as the Nash equilibrium points of the game. Adopting the abstraction of Nash equilibrium points as clusters allows for flexible definition of reward functions that characterize clusters without any modification to the underlying algorithm. We prove that well-established definitions of clusters in 2-domain information networks such as formal concepts, maximal bi-cliques, and noisy binary tiles can always be represented as Nash equilibrium points. Moreover, experimental results employing a variety of reward functions and several real world information networks illustrate that the GHIN framework produces more accurate and informative clusters than the recently proposed NetClus and state of the art MDC algorithms." @default.
- W2019201733 created "2016-06-24" @default.
- W2019201733 creator A5039109763 @default.
- W2019201733 creator A5036304600 @default.
- W2019201733 date "2011-08-21" @default.
- W2019201733 modified "2023-09-26" @default.
- W2019201733 title "A game theoretic framework for heterogenous information network clustering" @default.
- W2019201733 cites W174335443 @default.
- W2019201733 cites W1921200167 @default.
- W2019201733 cites W1964937891 @default.
- W2019201733 cites W196542726 @default.
- W2019201733 cites W1995433152 @default.
- W2019201733 cites W2010771292 @default.
- W2019201733 cites W2032794899 @default.
- W2019201733 cites W2036328877 @default.
- W2019201733 cites W2045248798 @default.
- W2019201733 cites W2072240081 @default.
- W2019201733 cites W2090257125 @default.
- W2019201733 cites W2100409033 @default.
- W2019201733 cites W2102880413 @default.
- W2019201733 cites W2112247328 @default.
- W2019201733 cites W2133576408 @default.
- W2019201733 cites W2136107412 @default.
- W2019201733 cites W2138180870 @default.
- W2019201733 cites W2144544802 @default.
- W2019201733 cites W2149288670 @default.
- W2019201733 cites W2152307491 @default.
- W2019201733 cites W2154946202 @default.
- W2019201733 cites W2162121795 @default.
- W2019201733 cites W2168175183 @default.
- W2019201733 cites W2434205482 @default.
- W2019201733 doi "https://doi.org/10.1145/2020408.2020547" @default.
- W2019201733 hasPublicationYear "2011" @default.
- W2019201733 type Work @default.
- W2019201733 sameAs 2019201733 @default.
- W2019201733 citedByCount "7" @default.
- W2019201733 countsByYear W20192017332014 @default.
- W2019201733 countsByYear W20192017332015 @default.
- W2019201733 countsByYear W20192017332016 @default.
- W2019201733 countsByYear W20192017332017 @default.
- W2019201733 countsByYear W20192017332018 @default.
- W2019201733 countsByYear W20192017332020 @default.
- W2019201733 crossrefType "proceedings-article" @default.
- W2019201733 hasAuthorship W2019201733A5036304600 @default.
- W2019201733 hasAuthorship W2019201733A5039109763 @default.
- W2019201733 hasConcept C111919701 @default.
- W2019201733 hasConcept C124101348 @default.
- W2019201733 hasConcept C126255220 @default.
- W2019201733 hasConcept C154945302 @default.
- W2019201733 hasConcept C199845137 @default.
- W2019201733 hasConcept C33923547 @default.
- W2019201733 hasConcept C41008148 @default.
- W2019201733 hasConcept C46814582 @default.
- W2019201733 hasConcept C73555534 @default.
- W2019201733 hasConcept C80444323 @default.
- W2019201733 hasConceptScore W2019201733C111919701 @default.
- W2019201733 hasConceptScore W2019201733C124101348 @default.
- W2019201733 hasConceptScore W2019201733C126255220 @default.
- W2019201733 hasConceptScore W2019201733C154945302 @default.
- W2019201733 hasConceptScore W2019201733C199845137 @default.
- W2019201733 hasConceptScore W2019201733C33923547 @default.
- W2019201733 hasConceptScore W2019201733C41008148 @default.
- W2019201733 hasConceptScore W2019201733C46814582 @default.
- W2019201733 hasConceptScore W2019201733C73555534 @default.
- W2019201733 hasConceptScore W2019201733C80444323 @default.
- W2019201733 hasLocation W20192017331 @default.
- W2019201733 hasOpenAccess W2019201733 @default.
- W2019201733 hasPrimaryLocation W20192017331 @default.
- W2019201733 hasRelatedWork W1979871427 @default.
- W2019201733 hasRelatedWork W1999627569 @default.
- W2019201733 hasRelatedWork W2187506573 @default.
- W2019201733 hasRelatedWork W2348097614 @default.
- W2019201733 hasRelatedWork W2354051833 @default.
- W2019201733 hasRelatedWork W2380998760 @default.
- W2019201733 hasRelatedWork W2387405106 @default.
- W2019201733 hasRelatedWork W2392374020 @default.
- W2019201733 hasRelatedWork W3107474891 @default.
- W2019201733 hasRelatedWork W763609066 @default.
- W2019201733 isParatext "false" @default.
- W2019201733 isRetracted "false" @default.
- W2019201733 magId "2019201733" @default.
- W2019201733 workType "article" @default.