Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019207102> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2019207102 endingPage "3406" @default.
- W2019207102 startingPage "3405" @default.
- W2019207102 abstract "Purpose: Diffuse Optical Tomography (DOT) provides multi-parameter data on metabolic function, however interpretation of these data can be challenging. Computer Aided Detection (CAD) data analysis procedures for DOT are introduced and applied to derive composite signatures of malignancy in human breast tissue. In contrast to previous optical mammography analysis schemes, the new statistical approach utilizes distributions of several optical properties across multiple subjects and across the many voxels from each subject. The methodology is tested in a population of biopsy-confirmed malignant (35) and benign (8) lesions. Methods: DOT CAD employs multi-parameter, multi-voxel, multi-subject measurements to derive a simple function which transforms DOT images of tissue chromophores and scattering into a ‘probability of malignancy’ tomogram. The formalism incorporates both intra-subject spatial heterogeneity and inter-subject distributions of physiological properties derived from a population of cancer-containing breasts. A weighted combination of physiological parameters define a ‘Malignancy Parameter’ (M). Logistic regression is currently utilized for weighting factor optimization. The utility of M is examined, employing 3D DOT images from an additional subject in a leave-one-out cross validation procedure. Results: Initial results confirm the automated technique can, without any human intervention, produce tomograms that distinguish healthy from malignant tissue. When compared with a gold standard tissue segmentation, this protocol produced an average true positive rate (sensitivity) of 89% and true negative rate (specificity) of 94% using an empirically chosen probability threshold. Conclusions: This study suggests the automated multi-subject, multi-voxel, multi-parameter statistical analysis of diffuse optical data are potentially quite useful, producing tomograms which distinguish healthy from malignant tissue using the relatively simple logistic regression classifier. This type of data analysis may also prove useful for suppression of image artifacts." @default.
- W2019207102 created "2016-06-24" @default.
- W2019207102 creator A5010824000 @default.
- W2019207102 creator A5021493758 @default.
- W2019207102 creator A5024323248 @default.
- W2019207102 creator A5032348810 @default.
- W2019207102 creator A5049607541 @default.
- W2019207102 creator A5058034410 @default.
- W2019207102 creator A5063870881 @default.
- W2019207102 creator A5084295422 @default.
- W2019207102 creator A5086475185 @default.
- W2019207102 date "2010-06-01" @default.
- W2019207102 modified "2023-10-06" @default.
- W2019207102 title "TU-E-201C-07: Computer Aided Detection for Diffuse Optical Mammography" @default.
- W2019207102 doi "https://doi.org/10.1118/1.3469309" @default.
- W2019207102 hasPublicationYear "2010" @default.
- W2019207102 type Work @default.
- W2019207102 sameAs 2019207102 @default.
- W2019207102 citedByCount "0" @default.
- W2019207102 crossrefType "journal-article" @default.
- W2019207102 hasAuthorship W2019207102A5010824000 @default.
- W2019207102 hasAuthorship W2019207102A5021493758 @default.
- W2019207102 hasAuthorship W2019207102A5024323248 @default.
- W2019207102 hasAuthorship W2019207102A5032348810 @default.
- W2019207102 hasAuthorship W2019207102A5049607541 @default.
- W2019207102 hasAuthorship W2019207102A5058034410 @default.
- W2019207102 hasAuthorship W2019207102A5063870881 @default.
- W2019207102 hasAuthorship W2019207102A5084295422 @default.
- W2019207102 hasAuthorship W2019207102A5086475185 @default.
- W2019207102 hasConcept C121608353 @default.
- W2019207102 hasConcept C126322002 @default.
- W2019207102 hasConcept C141379421 @default.
- W2019207102 hasConcept C145417883 @default.
- W2019207102 hasConcept C153180895 @default.
- W2019207102 hasConcept C154945302 @default.
- W2019207102 hasConcept C2777413408 @default.
- W2019207102 hasConcept C2780472235 @default.
- W2019207102 hasConcept C2908647359 @default.
- W2019207102 hasConcept C31601959 @default.
- W2019207102 hasConcept C41008148 @default.
- W2019207102 hasConcept C530470458 @default.
- W2019207102 hasConcept C54170458 @default.
- W2019207102 hasConcept C71924100 @default.
- W2019207102 hasConcept C99454951 @default.
- W2019207102 hasConceptScore W2019207102C121608353 @default.
- W2019207102 hasConceptScore W2019207102C126322002 @default.
- W2019207102 hasConceptScore W2019207102C141379421 @default.
- W2019207102 hasConceptScore W2019207102C145417883 @default.
- W2019207102 hasConceptScore W2019207102C153180895 @default.
- W2019207102 hasConceptScore W2019207102C154945302 @default.
- W2019207102 hasConceptScore W2019207102C2777413408 @default.
- W2019207102 hasConceptScore W2019207102C2780472235 @default.
- W2019207102 hasConceptScore W2019207102C2908647359 @default.
- W2019207102 hasConceptScore W2019207102C31601959 @default.
- W2019207102 hasConceptScore W2019207102C41008148 @default.
- W2019207102 hasConceptScore W2019207102C530470458 @default.
- W2019207102 hasConceptScore W2019207102C54170458 @default.
- W2019207102 hasConceptScore W2019207102C71924100 @default.
- W2019207102 hasConceptScore W2019207102C99454951 @default.
- W2019207102 hasIssue "6Part7" @default.
- W2019207102 hasLocation W20192071021 @default.
- W2019207102 hasOpenAccess W2019207102 @default.
- W2019207102 hasPrimaryLocation W20192071021 @default.
- W2019207102 hasRelatedWork W1841692512 @default.
- W2019207102 hasRelatedWork W2003056625 @default.
- W2019207102 hasRelatedWork W2008068589 @default.
- W2019207102 hasRelatedWork W2032229174 @default.
- W2019207102 hasRelatedWork W2046779999 @default.
- W2019207102 hasRelatedWork W2050322117 @default.
- W2019207102 hasRelatedWork W2050453868 @default.
- W2019207102 hasRelatedWork W2051028330 @default.
- W2019207102 hasRelatedWork W2127565084 @default.
- W2019207102 hasRelatedWork W2130880307 @default.
- W2019207102 hasRelatedWork W2146474208 @default.
- W2019207102 hasRelatedWork W2155689283 @default.
- W2019207102 hasRelatedWork W2187510766 @default.
- W2019207102 hasRelatedWork W2316967765 @default.
- W2019207102 hasRelatedWork W2521714275 @default.
- W2019207102 hasRelatedWork W2588606043 @default.
- W2019207102 hasRelatedWork W2753071814 @default.
- W2019207102 hasRelatedWork W2799472796 @default.
- W2019207102 hasRelatedWork W3097488831 @default.
- W2019207102 hasRelatedWork W3161070379 @default.
- W2019207102 hasVolume "37" @default.
- W2019207102 isParatext "false" @default.
- W2019207102 isRetracted "false" @default.
- W2019207102 magId "2019207102" @default.
- W2019207102 workType "article" @default.