Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019213384> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2019213384 endingPage "1026" @default.
- W2019213384 startingPage "1017" @default.
- W2019213384 abstract "We extend our earlier study of magnetic systems to give a unifying statistical–mechanical treatment of nonlinear effects in dielectrics in the presence of an external electric field. In so doing, we make contact with—and broaden the scope of−the Ho/ye–Stell mean‐field theory of such effects. In particular, we find that when the applied field is fully eliminated in favor of the macroscopic field, our P1HNC approximation (a hypernetted chain approximation truncated after the first spherical harmonic) yields the Ho/ye–Stell expression for dielectric susceptibility χ as a function of macroscopic field. We also show the equivalence of our formalism and an open‐system version of the nonlinear formalism of Nienhuis and Deutch as well as the correspondences between our results and the nonlinear results of Ramshaw. Similarly, we note the direct connection between our approach and the wall‐particle approach used by Rasaiah, Isbister, and Stell and by Martina and Stell. The latter approach permits the extension of our P1HNC approximation for the one‐particle correlation function of the dielectric medium into the immediate vicinity of a surface of that medium defined by a spherical macrocavity through which an applied field E0 is passing (although we do not focus on that extension here). The wall‐particle approach yields expressions initially in terms of applied field E0 rather than macroscopic field E. We compare our microscopic method of eliminating E0 with the use of the most complete macroscopic relation between E and E0 currently available and conclude that microscopic elimination of E0 is decidedly advantageous, at least in the regime we study here, which is far from the wall on a microscopic scale. We also make some comparisons with the computer simulation results of Adams and Adams. Other specific results we obtain include a new microscopic derivation of the electrostriction effect exact through O(E2) as well as the P1HNC result for the dielectric‐saturation coefficient. It predicts for an open system a crossover from ’’normal’’ saturation (i.e., negative ∂χ/∂E) to ’’anomalous’’ saturation (positive ∂χ/∂E) as a dielectric liquid approaches its critical point. We note that, although not exact, the P1HNC theory yields a dielectric susceptibility that is exact in the low‐density limit (where it reduces to the celebrated Debye–Langevin result for noninteracting particles). In contrast to the oversimple Debye–Langevin result, which gives anomalous saturation for all states of an open system, the P1HNC result yields normal saturation in the liquid‐state region." @default.
- W2019213384 created "2016-06-24" @default.
- W2019213384 creator A5057965332 @default.
- W2019213384 creator A5072361799 @default.
- W2019213384 date "1982-07-15" @default.
- W2019213384 modified "2023-10-18" @default.
- W2019213384 title "Electrostriction and dielectric saturation in a polar fluid" @default.
- W2019213384 cites W1587601693 @default.
- W2019213384 cites W1591053498 @default.
- W2019213384 cites W1964500109 @default.
- W2019213384 cites W1975112967 @default.
- W2019213384 cites W1980106433 @default.
- W2019213384 cites W1982447384 @default.
- W2019213384 cites W1995755636 @default.
- W2019213384 cites W1997321173 @default.
- W2019213384 cites W2008679178 @default.
- W2019213384 cites W2019141045 @default.
- W2019213384 cites W2022874390 @default.
- W2019213384 cites W2023573373 @default.
- W2019213384 cites W2035217100 @default.
- W2019213384 cites W2038962819 @default.
- W2019213384 cites W2049593279 @default.
- W2019213384 cites W2053428261 @default.
- W2019213384 cites W2053959459 @default.
- W2019213384 cites W2060677776 @default.
- W2019213384 cites W2062010676 @default.
- W2019213384 cites W2064535015 @default.
- W2019213384 cites W2065813225 @default.
- W2019213384 cites W2072315753 @default.
- W2019213384 cites W2135065813 @default.
- W2019213384 cites W2157081197 @default.
- W2019213384 doi "https://doi.org/10.1063/1.443913" @default.
- W2019213384 hasPublicationYear "1982" @default.
- W2019213384 type Work @default.
- W2019213384 sameAs 2019213384 @default.
- W2019213384 citedByCount "16" @default.
- W2019213384 countsByYear W20192133842019 @default.
- W2019213384 countsByYear W20192133842023 @default.
- W2019213384 crossrefType "journal-article" @default.
- W2019213384 hasAuthorship W2019213384A5057965332 @default.
- W2019213384 hasAuthorship W2019213384A5072361799 @default.
- W2019213384 hasConcept C100082104 @default.
- W2019213384 hasConcept C117911374 @default.
- W2019213384 hasConcept C121332964 @default.
- W2019213384 hasConcept C121864883 @default.
- W2019213384 hasConcept C133386390 @default.
- W2019213384 hasConcept C142362112 @default.
- W2019213384 hasConcept C153349607 @default.
- W2019213384 hasConcept C158622935 @default.
- W2019213384 hasConcept C24890656 @default.
- W2019213384 hasConcept C26873012 @default.
- W2019213384 hasConcept C558565934 @default.
- W2019213384 hasConcept C60799052 @default.
- W2019213384 hasConcept C62520636 @default.
- W2019213384 hasConcept C73301696 @default.
- W2019213384 hasConcept C74650414 @default.
- W2019213384 hasConceptScore W2019213384C100082104 @default.
- W2019213384 hasConceptScore W2019213384C117911374 @default.
- W2019213384 hasConceptScore W2019213384C121332964 @default.
- W2019213384 hasConceptScore W2019213384C121864883 @default.
- W2019213384 hasConceptScore W2019213384C133386390 @default.
- W2019213384 hasConceptScore W2019213384C142362112 @default.
- W2019213384 hasConceptScore W2019213384C153349607 @default.
- W2019213384 hasConceptScore W2019213384C158622935 @default.
- W2019213384 hasConceptScore W2019213384C24890656 @default.
- W2019213384 hasConceptScore W2019213384C26873012 @default.
- W2019213384 hasConceptScore W2019213384C558565934 @default.
- W2019213384 hasConceptScore W2019213384C60799052 @default.
- W2019213384 hasConceptScore W2019213384C62520636 @default.
- W2019213384 hasConceptScore W2019213384C73301696 @default.
- W2019213384 hasConceptScore W2019213384C74650414 @default.
- W2019213384 hasIssue "2" @default.
- W2019213384 hasLocation W20192133841 @default.
- W2019213384 hasOpenAccess W2019213384 @default.
- W2019213384 hasPrimaryLocation W20192133841 @default.
- W2019213384 hasRelatedWork W1488363566 @default.
- W2019213384 hasRelatedWork W1639348599 @default.
- W2019213384 hasRelatedWork W1965333058 @default.
- W2019213384 hasRelatedWork W1969707919 @default.
- W2019213384 hasRelatedWork W1970154851 @default.
- W2019213384 hasRelatedWork W1978698753 @default.
- W2019213384 hasRelatedWork W1999018299 @default.
- W2019213384 hasRelatedWork W2010801523 @default.
- W2019213384 hasRelatedWork W2035935237 @default.
- W2019213384 hasRelatedWork W2568733761 @default.
- W2019213384 hasVolume "77" @default.
- W2019213384 isParatext "false" @default.
- W2019213384 isRetracted "false" @default.
- W2019213384 magId "2019213384" @default.
- W2019213384 workType "article" @default.