Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019241680> ?p ?o ?g. }
- W2019241680 endingPage "2861" @default.
- W2019241680 startingPage "2850" @default.
- W2019241680 abstract "Accurate modeling of the respiratory cycle is important to account for the effect of organ motion on dose calculation for lung cancer patients. The aim of this study is to evaluate the accuracy of a respiratory model for lung cancer patients. Lujan et al. [Med. Phys. 26(5), 715-720 (1999)] proposed a model, which became widely used, to describe organ motion due to respiration. This model assumes that the parameters do not vary between and within breathing cycles. In this study, first, the correlation of respiratory motion traces with the model f(t) as a function of the parameter n (n = 1, 2, 3) was undertaken for each breathing cycle from 331 four-minute respiratory traces acquired from 24 lung cancer patients using three breathing types: free breathing, audio instruction, and audio-visual biofeedback. Because cos2 and cos4 had similar correlation coefficients, and cos2 and cos1 have a trigonometric relationship, for simplicity, the cos1 value was consequently used for further analysis in which the variations in mean position (z0), amplitude of motion (b) and period (tau) with and without biofeedback or instructions were investigated. For all breathing types, the parameter values, mean position (z0), amplitude of motion (b), and period (tau) exhibited significant cycle-to-cycle variations. Audio-visual biofeedback showed the least variations for all three parameters (z0, b, and tau). It was found that mean position (z0) could be approximated with a normal distribution, and the amplitude of motion (b) and period (tau) could be approximated with log normal distributions. The overall probability density function (pdf) of f(t) for each of the three breathing types was fitted with three models: normal, bimodal, and the pdf of a simple harmonic oscillator. It was found that the normal and the bimodal models represented the overall respiratory motion pdfs with correlation values from 0.95 to 0.99, whereas the range of the simple harmonic oscillator pdf correlation values was 0.71 to 0.81. This study demonstrates that the pdfs of mean position (z0), amplitude of motion (b), and period (tau) can be used for sampling to obtain more realistic respiratory traces. The overall standard deviations of respiratory motion were 0.48, 0.57, and 0.55 cm for free breathing, audio instruction, and audio-visual biofeedback, respectively." @default.
- W2019241680 created "2016-06-24" @default.
- W2019241680 creator A5006078895 @default.
- W2019241680 creator A5012356605 @default.
- W2019241680 creator A5051391435 @default.
- W2019241680 creator A5077796894 @default.
- W2019241680 creator A5086049559 @default.
- W2019241680 date "2005-08-24" @default.
- W2019241680 modified "2023-10-12" @default.
- W2019241680 title "The application of the sinusoidal model to lung cancer patient respiratory motion" @default.
- W2019241680 cites W1963882488 @default.
- W2019241680 cites W1969933448 @default.
- W2019241680 cites W1975143516 @default.
- W2019241680 cites W1980973875 @default.
- W2019241680 cites W1984649402 @default.
- W2019241680 cites W1996728714 @default.
- W2019241680 cites W2004110874 @default.
- W2019241680 cites W2005845405 @default.
- W2019241680 cites W2007741588 @default.
- W2019241680 cites W2008336601 @default.
- W2019241680 cites W2009947337 @default.
- W2019241680 cites W2015687286 @default.
- W2019241680 cites W2029290750 @default.
- W2019241680 cites W2030700189 @default.
- W2019241680 cites W2031512758 @default.
- W2019241680 cites W2032774604 @default.
- W2019241680 cites W2045260373 @default.
- W2019241680 cites W2052066632 @default.
- W2019241680 cites W2052643382 @default.
- W2019241680 cites W2054161394 @default.
- W2019241680 cites W2054475080 @default.
- W2019241680 cites W2058154391 @default.
- W2019241680 cites W2065976242 @default.
- W2019241680 cites W2066914778 @default.
- W2019241680 cites W2072294335 @default.
- W2019241680 cites W2087212896 @default.
- W2019241680 cites W2091881150 @default.
- W2019241680 cites W2092249864 @default.
- W2019241680 cites W2108522670 @default.
- W2019241680 cites W2116723621 @default.
- W2019241680 cites W2129057480 @default.
- W2019241680 cites W2160054214 @default.
- W2019241680 cites W2264709743 @default.
- W2019241680 cites W3127438721 @default.
- W2019241680 doi "https://doi.org/10.1118/1.2001220" @default.
- W2019241680 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16266099" @default.
- W2019241680 hasPublicationYear "2005" @default.
- W2019241680 type Work @default.
- W2019241680 sameAs 2019241680 @default.
- W2019241680 citedByCount "140" @default.
- W2019241680 countsByYear W20192416802012 @default.
- W2019241680 countsByYear W20192416802013 @default.
- W2019241680 countsByYear W20192416802014 @default.
- W2019241680 countsByYear W20192416802015 @default.
- W2019241680 countsByYear W20192416802016 @default.
- W2019241680 countsByYear W20192416802017 @default.
- W2019241680 countsByYear W20192416802018 @default.
- W2019241680 countsByYear W20192416802019 @default.
- W2019241680 countsByYear W20192416802020 @default.
- W2019241680 countsByYear W20192416802021 @default.
- W2019241680 countsByYear W20192416802022 @default.
- W2019241680 countsByYear W20192416802023 @default.
- W2019241680 crossrefType "journal-article" @default.
- W2019241680 hasAuthorship W2019241680A5006078895 @default.
- W2019241680 hasAuthorship W2019241680A5012356605 @default.
- W2019241680 hasAuthorship W2019241680A5051391435 @default.
- W2019241680 hasAuthorship W2019241680A5077796894 @default.
- W2019241680 hasAuthorship W2019241680A5086049559 @default.
- W2019241680 hasConcept C10138342 @default.
- W2019241680 hasConcept C120665830 @default.
- W2019241680 hasConcept C121332964 @default.
- W2019241680 hasConcept C126322002 @default.
- W2019241680 hasConcept C162324750 @default.
- W2019241680 hasConcept C180205008 @default.
- W2019241680 hasConcept C1862650 @default.
- W2019241680 hasConcept C198082294 @default.
- W2019241680 hasConcept C2776256026 @default.
- W2019241680 hasConcept C2776377089 @default.
- W2019241680 hasConcept C33923547 @default.
- W2019241680 hasConcept C39300077 @default.
- W2019241680 hasConcept C42219234 @default.
- W2019241680 hasConcept C534529494 @default.
- W2019241680 hasConcept C71924100 @default.
- W2019241680 hasConceptScore W2019241680C10138342 @default.
- W2019241680 hasConceptScore W2019241680C120665830 @default.
- W2019241680 hasConceptScore W2019241680C121332964 @default.
- W2019241680 hasConceptScore W2019241680C126322002 @default.
- W2019241680 hasConceptScore W2019241680C162324750 @default.
- W2019241680 hasConceptScore W2019241680C180205008 @default.
- W2019241680 hasConceptScore W2019241680C1862650 @default.
- W2019241680 hasConceptScore W2019241680C198082294 @default.
- W2019241680 hasConceptScore W2019241680C2776256026 @default.
- W2019241680 hasConceptScore W2019241680C2776377089 @default.
- W2019241680 hasConceptScore W2019241680C33923547 @default.
- W2019241680 hasConceptScore W2019241680C39300077 @default.
- W2019241680 hasConceptScore W2019241680C42219234 @default.
- W2019241680 hasConceptScore W2019241680C534529494 @default.
- W2019241680 hasConceptScore W2019241680C71924100 @default.