Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019244786> ?p ?o ?g. }
- W2019244786 endingPage "115" @default.
- W2019244786 startingPage "103" @default.
- W2019244786 abstract "Response surface method is a convenient tool to assess reliability for a wide range of structural mechanical problems. More specifically, adaptive schemes which consist in iteratively refine the experimental design close to the limit state have received much attention. However, it is generally difficult to take into account a lot of variables and to well handle approximation error. The method, proposed in this paper, addresses these points using sparse response surface and a relevant criterion for results accuracy. For this purpose, a response surface is built from an initial Latin Hypercube Sampling (LHS) where the most significant terms are chosen from statistical criteria and cross-validation method. At each step, LHS is refined in a region of interest defined with respect to an importance level on probability density in the design point. Two convergence criteria are used in the procedure: The first one concerns localization of the region and the second one the response surface quality. Finally, a bootstrap method is used to determine the influence of the response error on the estimated probability of failure. This method is applied to several examples and results are discussed." @default.
- W2019244786 created "2016-06-24" @default.
- W2019244786 creator A5028662413 @default.
- W2019244786 creator A5071974352 @default.
- W2019244786 creator A5085090687 @default.
- W2019244786 date "2013-04-01" @default.
- W2019244786 modified "2023-10-05" @default.
- W2019244786 title "A new adaptive response surface method for reliability analysis" @default.
- W2019244786 cites W1572480955 @default.
- W2019244786 cites W1619291256 @default.
- W2019244786 cites W1966813174 @default.
- W2019244786 cites W1968685496 @default.
- W2019244786 cites W1973412675 @default.
- W2019244786 cites W1977902821 @default.
- W2019244786 cites W1978459922 @default.
- W2019244786 cites W1987493577 @default.
- W2019244786 cites W1991548802 @default.
- W2019244786 cites W1995077217 @default.
- W2019244786 cites W1996226468 @default.
- W2019244786 cites W1999091229 @default.
- W2019244786 cites W2001842014 @default.
- W2019244786 cites W2003986068 @default.
- W2019244786 cites W2004010273 @default.
- W2019244786 cites W2007560771 @default.
- W2019244786 cites W2008034786 @default.
- W2019244786 cites W2014258554 @default.
- W2019244786 cites W2017818133 @default.
- W2019244786 cites W2018044188 @default.
- W2019244786 cites W2022076538 @default.
- W2019244786 cites W2064903049 @default.
- W2019244786 cites W2065454130 @default.
- W2019244786 cites W2067829701 @default.
- W2019244786 cites W2083415217 @default.
- W2019244786 cites W2092127669 @default.
- W2019244786 cites W2096285034 @default.
- W2019244786 cites W2105981176 @default.
- W2019244786 cites W2113127808 @default.
- W2019244786 cites W2117897510 @default.
- W2019244786 cites W2148102962 @default.
- W2019244786 cites W2149183242 @default.
- W2019244786 cites W2168175751 @default.
- W2019244786 cites W4300819821 @default.
- W2019244786 doi "https://doi.org/10.1016/j.probengmech.2012.10.001" @default.
- W2019244786 hasPublicationYear "2013" @default.
- W2019244786 type Work @default.
- W2019244786 sameAs 2019244786 @default.
- W2019244786 citedByCount "134" @default.
- W2019244786 countsByYear W20192447862014 @default.
- W2019244786 countsByYear W20192447862015 @default.
- W2019244786 countsByYear W20192447862016 @default.
- W2019244786 countsByYear W20192447862017 @default.
- W2019244786 countsByYear W20192447862018 @default.
- W2019244786 countsByYear W20192447862019 @default.
- W2019244786 countsByYear W20192447862020 @default.
- W2019244786 countsByYear W20192447862021 @default.
- W2019244786 countsByYear W20192447862022 @default.
- W2019244786 countsByYear W20192447862023 @default.
- W2019244786 crossrefType "journal-article" @default.
- W2019244786 hasAuthorship W2019244786A5028662413 @default.
- W2019244786 hasAuthorship W2019244786A5071974352 @default.
- W2019244786 hasAuthorship W2019244786A5085090687 @default.
- W2019244786 hasBestOaLocation W20192447862 @default.
- W2019244786 hasConcept C105795698 @default.
- W2019244786 hasConcept C106131492 @default.
- W2019244786 hasConcept C111472728 @default.
- W2019244786 hasConcept C11413529 @default.
- W2019244786 hasConcept C119857082 @default.
- W2019244786 hasConcept C121332964 @default.
- W2019244786 hasConcept C126255220 @default.
- W2019244786 hasConcept C127413603 @default.
- W2019244786 hasConcept C134306372 @default.
- W2019244786 hasConcept C138885662 @default.
- W2019244786 hasConcept C140779682 @default.
- W2019244786 hasConcept C146978453 @default.
- W2019244786 hasConcept C150077022 @default.
- W2019244786 hasConcept C151201525 @default.
- W2019244786 hasConcept C162324750 @default.
- W2019244786 hasConcept C163258240 @default.
- W2019244786 hasConcept C19499675 @default.
- W2019244786 hasConcept C204323151 @default.
- W2019244786 hasConcept C20820323 @default.
- W2019244786 hasConcept C2524010 @default.
- W2019244786 hasConcept C2776799497 @default.
- W2019244786 hasConcept C2777303404 @default.
- W2019244786 hasConcept C2779530757 @default.
- W2019244786 hasConcept C2781395549 @default.
- W2019244786 hasConcept C28719098 @default.
- W2019244786 hasConcept C31972630 @default.
- W2019244786 hasConcept C33923547 @default.
- W2019244786 hasConcept C41008148 @default.
- W2019244786 hasConcept C43214815 @default.
- W2019244786 hasConcept C50522688 @default.
- W2019244786 hasConcept C62520636 @default.
- W2019244786 hasConceptScore W2019244786C105795698 @default.
- W2019244786 hasConceptScore W2019244786C106131492 @default.
- W2019244786 hasConceptScore W2019244786C111472728 @default.
- W2019244786 hasConceptScore W2019244786C11413529 @default.
- W2019244786 hasConceptScore W2019244786C119857082 @default.