Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019267730> ?p ?o ?g. }
- W2019267730 endingPage "3481" @default.
- W2019267730 startingPage "3473" @default.
- W2019267730 abstract "Support vector regression (SVR) has become very promising and popular in the field of machine learning due to its attractive features and profound empirical performance for small sample, nonlinearity and high dimensional data application. However, most existing support vector regression learning algorithms are limited to the parameters selection and slow learning for large sample. This paper considers an adaptive particle swarm optimization (APSO) algorithm for the parameters selection of support vector regression model. In order to accelerate its training process while keeping high accurate forecasting in each parameters selection step of APSO iteration, an optimal training subset (OTS) method is carried out to choose the representation data points of the full training data set. Furthermore, the optimal parameters setting of SVR and the optimal size of OTS are studied preliminary. Experimental results of an UCI data set and electric load forecasting in New South Wales show that the proposed model is effective and produces better generalization performance." @default.
- W2019267730 created "2016-06-24" @default.
- W2019267730 creator A5082970404 @default.
- W2019267730 date "2013-08-01" @default.
- W2019267730 modified "2023-10-15" @default.
- W2019267730 title "Support vector regression based on optimal training subset and adaptive particle swarm optimization algorithm" @default.
- W2019267730 cites W1964357740 @default.
- W2019267730 cites W1979864228 @default.
- W2019267730 cites W1985727987 @default.
- W2019267730 cites W2004346294 @default.
- W2019267730 cites W2029469881 @default.
- W2019267730 cites W2036657109 @default.
- W2019267730 cites W2037370667 @default.
- W2019267730 cites W2037575202 @default.
- W2019267730 cites W2039935421 @default.
- W2019267730 cites W2047159855 @default.
- W2019267730 cites W2059115408 @default.
- W2019267730 cites W2062156713 @default.
- W2019267730 cites W2068438324 @default.
- W2019267730 cites W2068684977 @default.
- W2019267730 cites W2077913352 @default.
- W2019267730 cites W2090727353 @default.
- W2019267730 cites W2092910747 @default.
- W2019267730 cites W2093626865 @default.
- W2019267730 cites W2118012246 @default.
- W2019267730 cites W2139793825 @default.
- W2019267730 cites W2168605133 @default.
- W2019267730 cites W2169008348 @default.
- W2019267730 cites W3123622325 @default.
- W2019267730 doi "https://doi.org/10.1016/j.asoc.2013.04.003" @default.
- W2019267730 hasPublicationYear "2013" @default.
- W2019267730 type Work @default.
- W2019267730 sameAs 2019267730 @default.
- W2019267730 citedByCount "30" @default.
- W2019267730 countsByYear W20192677302014 @default.
- W2019267730 countsByYear W20192677302015 @default.
- W2019267730 countsByYear W20192677302016 @default.
- W2019267730 countsByYear W20192677302017 @default.
- W2019267730 countsByYear W20192677302019 @default.
- W2019267730 countsByYear W20192677302020 @default.
- W2019267730 countsByYear W20192677302021 @default.
- W2019267730 countsByYear W20192677302023 @default.
- W2019267730 crossrefType "journal-article" @default.
- W2019267730 hasAuthorship W2019267730A5082970404 @default.
- W2019267730 hasConcept C105795698 @default.
- W2019267730 hasConcept C11413529 @default.
- W2019267730 hasConcept C119857082 @default.
- W2019267730 hasConcept C12267149 @default.
- W2019267730 hasConcept C124101348 @default.
- W2019267730 hasConcept C126255220 @default.
- W2019267730 hasConcept C134306372 @default.
- W2019267730 hasConcept C154945302 @default.
- W2019267730 hasConcept C177148314 @default.
- W2019267730 hasConcept C177264268 @default.
- W2019267730 hasConcept C185592680 @default.
- W2019267730 hasConcept C198531522 @default.
- W2019267730 hasConcept C199360897 @default.
- W2019267730 hasConcept C33923547 @default.
- W2019267730 hasConcept C41008148 @default.
- W2019267730 hasConcept C43617362 @default.
- W2019267730 hasConcept C58489278 @default.
- W2019267730 hasConcept C81917197 @default.
- W2019267730 hasConcept C83546350 @default.
- W2019267730 hasConcept C85617194 @default.
- W2019267730 hasConceptScore W2019267730C105795698 @default.
- W2019267730 hasConceptScore W2019267730C11413529 @default.
- W2019267730 hasConceptScore W2019267730C119857082 @default.
- W2019267730 hasConceptScore W2019267730C12267149 @default.
- W2019267730 hasConceptScore W2019267730C124101348 @default.
- W2019267730 hasConceptScore W2019267730C126255220 @default.
- W2019267730 hasConceptScore W2019267730C134306372 @default.
- W2019267730 hasConceptScore W2019267730C154945302 @default.
- W2019267730 hasConceptScore W2019267730C177148314 @default.
- W2019267730 hasConceptScore W2019267730C177264268 @default.
- W2019267730 hasConceptScore W2019267730C185592680 @default.
- W2019267730 hasConceptScore W2019267730C198531522 @default.
- W2019267730 hasConceptScore W2019267730C199360897 @default.
- W2019267730 hasConceptScore W2019267730C33923547 @default.
- W2019267730 hasConceptScore W2019267730C41008148 @default.
- W2019267730 hasConceptScore W2019267730C43617362 @default.
- W2019267730 hasConceptScore W2019267730C58489278 @default.
- W2019267730 hasConceptScore W2019267730C81917197 @default.
- W2019267730 hasConceptScore W2019267730C83546350 @default.
- W2019267730 hasConceptScore W2019267730C85617194 @default.
- W2019267730 hasIssue "8" @default.
- W2019267730 hasLocation W20192677301 @default.
- W2019267730 hasOpenAccess W2019267730 @default.
- W2019267730 hasPrimaryLocation W20192677301 @default.
- W2019267730 hasRelatedWork W148178222 @default.
- W2019267730 hasRelatedWork W1630076647 @default.
- W2019267730 hasRelatedWork W2048963458 @default.
- W2019267730 hasRelatedWork W2080152487 @default.
- W2019267730 hasRelatedWork W2090763504 @default.
- W2019267730 hasRelatedWork W2104657898 @default.
- W2019267730 hasRelatedWork W2359952343 @default.
- W2019267730 hasRelatedWork W2371138613 @default.
- W2019267730 hasRelatedWork W43109613 @default.
- W2019267730 hasRelatedWork W1948992892 @default.