Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019270909> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2019270909 abstract "Surface soil moisture is variable, and it plays a crucial role in many processes in the soil-atmosphere interface. The knowledge of the surface soil moisture is very helpful for retrieving the spatial-temporal distribution of water-logging of agriculture field. The capability of microwave remote sensing has been proven that due to its all-weather, day-round measurement and sensitive backscattering coefficient to soil water content, it can derive quantitative soil moisture information from active and passive sensor systems at various spatial resolutions. Soil surface roughness and vegetation of agriculture field are also two main factors influenced on radar backscattering coefficient. So many models have been developed to calculate surface soil moisture, for example, Integral Equation Model (IEM) for bare field, the semi-empirical water cloud model and a novel method for agriculture field. However, these models need too many parameters. It is difficult to use them easily and widely. The paper retrieved the surface soil moisture in cotton fields using 79 ASAR GM images data from 2007-2011 during cotton growing periods. The auxiliary parameters were calculated using MODIS data. The main method was following: (1) got the spatial distribution of land-use classification using crop time series characteristics and MODIS data, (2) corrected the matrix pixels data of backscattering coefficient using the land-use classification data, (3) separated backscattering coefficient influenced by soil and vegetation using the semi-empirical water-cloud model and calculated the model's parameters by ASAR GM data under water saturation state using non-linear statistic mode and the vegetation water content from NDVI data calculated by MODIS data, (4) calculated soil surface moisture by ASAR GM time-series data using the corrected soil backscattering coefficient. This method does not require any auxiliary data beforehand. Compared the method value with the measured data sitting on cotton field in SIHU region, the results indicated that this method was corrected (R2=0.779 n=25). And the spatial temporal distribution of surface soil moisture during cotton growing periods was calculated." @default.
- W2019270909 created "2016-06-24" @default.
- W2019270909 creator A5050771908 @default.
- W2019270909 creator A5051824611 @default.
- W2019270909 date "2013-01-01" @default.
- W2019270909 modified "2023-09-23" @default.
- W2019270909 title "Retrieving Surface Soil Moisture in Cotton Fields Using ASAR and MODIS Data Without the Auxiliary Data in SIHU Region, Hubei Province, China" @default.
- W2019270909 cites W1967428467 @default.
- W2019270909 cites W1973719386 @default.
- W2019270909 cites W1987440034 @default.
- W2019270909 cites W1990258638 @default.
- W2019270909 cites W2010979668 @default.
- W2019270909 cites W2017034298 @default.
- W2019270909 cites W2026612055 @default.
- W2019270909 cites W2078669597 @default.
- W2019270909 cites W2084952127 @default.
- W2019270909 cites W2089036470 @default.
- W2019270909 cites W2092055157 @default.
- W2019270909 cites W2116376402 @default.
- W2019270909 cites W2123744475 @default.
- W2019270909 cites W2141348340 @default.
- W2019270909 doi "https://doi.org/10.1109/icmtma.2013.240" @default.
- W2019270909 hasPublicationYear "2013" @default.
- W2019270909 type Work @default.
- W2019270909 sameAs 2019270909 @default.
- W2019270909 citedByCount "1" @default.
- W2019270909 countsByYear W20192709092015 @default.
- W2019270909 crossrefType "proceedings-article" @default.
- W2019270909 hasAuthorship W2019270909A5050771908 @default.
- W2019270909 hasAuthorship W2019270909A5051824611 @default.
- W2019270909 hasConcept C127313418 @default.
- W2019270909 hasConcept C153294291 @default.
- W2019270909 hasConcept C166957645 @default.
- W2019270909 hasConcept C176864760 @default.
- W2019270909 hasConcept C187320778 @default.
- W2019270909 hasConcept C191935318 @default.
- W2019270909 hasConcept C205649164 @default.
- W2019270909 hasConcept C24939127 @default.
- W2019270909 hasConcept C39432304 @default.
- W2019270909 hasConcept C62649853 @default.
- W2019270909 hasConceptScore W2019270909C127313418 @default.
- W2019270909 hasConceptScore W2019270909C153294291 @default.
- W2019270909 hasConceptScore W2019270909C166957645 @default.
- W2019270909 hasConceptScore W2019270909C176864760 @default.
- W2019270909 hasConceptScore W2019270909C187320778 @default.
- W2019270909 hasConceptScore W2019270909C191935318 @default.
- W2019270909 hasConceptScore W2019270909C205649164 @default.
- W2019270909 hasConceptScore W2019270909C24939127 @default.
- W2019270909 hasConceptScore W2019270909C39432304 @default.
- W2019270909 hasConceptScore W2019270909C62649853 @default.
- W2019270909 hasLocation W20192709091 @default.
- W2019270909 hasOpenAccess W2019270909 @default.
- W2019270909 hasPrimaryLocation W20192709091 @default.
- W2019270909 hasRelatedWork W2126095845 @default.
- W2019270909 hasRelatedWork W2161197664 @default.
- W2019270909 hasRelatedWork W2172220848 @default.
- W2019270909 hasRelatedWork W2245549564 @default.
- W2019270909 hasRelatedWork W2367386898 @default.
- W2019270909 hasRelatedWork W2493109756 @default.
- W2019270909 hasRelatedWork W2773560995 @default.
- W2019270909 hasRelatedWork W2804572307 @default.
- W2019270909 hasRelatedWork W2936499484 @default.
- W2019270909 hasRelatedWork W3093472655 @default.
- W2019270909 isParatext "false" @default.
- W2019270909 isRetracted "false" @default.
- W2019270909 magId "2019270909" @default.
- W2019270909 workType "article" @default.