Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019278527> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2019278527 abstract "Covariance matrices of multivariate data capture feature correlations compactly, and being very robust to noise, they have been used extensively as feature descriptors in many areas in computer vision, like, people appearance tracking, DTI imaging, face recognition, etc. Since these matrices do not adhere to the Euclidean geometry, clustering algorithms using the traditional distance measures cannot be directly extended to them. Prior work in this area has been restricted to using K-means type clustering over the Rieman-nian space using the Riemannian metric. As the applications scale, it is not practical to assume the number of components in a clustering model, failing any soft-clustering algorithm. In this paper, a novel application of the Dirich-let Process Mixture Model framework is proposed towards unsupervised clustering of symmetric positive definite matrices. We approach the problem by extending the existing K-means type clustering algorithms based on the logdet divergence measure and derive the counterpart of it in a Bayesian framework, which leads to the Wishart-Inverse Wishart conjugate pair. Alternative possibilities based on the matrix Frobenius norm and log-Euclidean measures are also proposed. The models are extensively compared using two real-world datasets against the state-of-the-art algorithms and demonstrate superior performance." @default.
- W2019278527 created "2016-06-24" @default.
- W2019278527 creator A5024613828 @default.
- W2019278527 creator A5027267535 @default.
- W2019278527 creator A5081890915 @default.
- W2019278527 creator A5084054414 @default.
- W2019278527 date "2011-06-01" @default.
- W2019278527 modified "2023-10-17" @default.
- W2019278527 title "Dirichlet process mixture models on symmetric positive definite matrices for appearance clustering in video surveillance applications" @default.
- W2019278527 cites W1969771395 @default.
- W2019278527 cites W1983496390 @default.
- W2019278527 cites W1986964250 @default.
- W2019278527 cites W2013109087 @default.
- W2019278527 cites W2027124963 @default.
- W2019278527 cites W2033419168 @default.
- W2019278527 cites W2046176189 @default.
- W2019278527 cites W2069429561 @default.
- W2019278527 cites W2080972498 @default.
- W2019278527 cites W2112759033 @default.
- W2019278527 cites W2119350939 @default.
- W2019278527 cites W2170902875 @default.
- W2019278527 cites W2171937595 @default.
- W2019278527 cites W3139750972 @default.
- W2019278527 cites W4244030505 @default.
- W2019278527 doi "https://doi.org/10.1109/cvpr.2011.5995723" @default.
- W2019278527 hasPublicationYear "2011" @default.
- W2019278527 type Work @default.
- W2019278527 sameAs 2019278527 @default.
- W2019278527 citedByCount "16" @default.
- W2019278527 countsByYear W20192785272014 @default.
- W2019278527 countsByYear W20192785272015 @default.
- W2019278527 countsByYear W20192785272016 @default.
- W2019278527 countsByYear W20192785272017 @default.
- W2019278527 countsByYear W20192785272022 @default.
- W2019278527 crossrefType "proceedings-article" @default.
- W2019278527 hasAuthorship W2019278527A5024613828 @default.
- W2019278527 hasAuthorship W2019278527A5027267535 @default.
- W2019278527 hasAuthorship W2019278527A5081890915 @default.
- W2019278527 hasAuthorship W2019278527A5084054414 @default.
- W2019278527 hasConcept C111919701 @default.
- W2019278527 hasConcept C114614502 @default.
- W2019278527 hasConcept C121332964 @default.
- W2019278527 hasConcept C126255220 @default.
- W2019278527 hasConcept C154945302 @default.
- W2019278527 hasConcept C158693339 @default.
- W2019278527 hasConcept C171686336 @default.
- W2019278527 hasConcept C28826006 @default.
- W2019278527 hasConcept C33923547 @default.
- W2019278527 hasConcept C41008148 @default.
- W2019278527 hasConcept C49712288 @default.
- W2019278527 hasConcept C500882744 @default.
- W2019278527 hasConcept C54848796 @default.
- W2019278527 hasConcept C62520636 @default.
- W2019278527 hasConcept C73555534 @default.
- W2019278527 hasConcept C98045186 @default.
- W2019278527 hasConceptScore W2019278527C111919701 @default.
- W2019278527 hasConceptScore W2019278527C114614502 @default.
- W2019278527 hasConceptScore W2019278527C121332964 @default.
- W2019278527 hasConceptScore W2019278527C126255220 @default.
- W2019278527 hasConceptScore W2019278527C154945302 @default.
- W2019278527 hasConceptScore W2019278527C158693339 @default.
- W2019278527 hasConceptScore W2019278527C171686336 @default.
- W2019278527 hasConceptScore W2019278527C28826006 @default.
- W2019278527 hasConceptScore W2019278527C33923547 @default.
- W2019278527 hasConceptScore W2019278527C41008148 @default.
- W2019278527 hasConceptScore W2019278527C49712288 @default.
- W2019278527 hasConceptScore W2019278527C500882744 @default.
- W2019278527 hasConceptScore W2019278527C54848796 @default.
- W2019278527 hasConceptScore W2019278527C62520636 @default.
- W2019278527 hasConceptScore W2019278527C73555534 @default.
- W2019278527 hasConceptScore W2019278527C98045186 @default.
- W2019278527 hasLocation W20192785271 @default.
- W2019278527 hasOpenAccess W2019278527 @default.
- W2019278527 hasPrimaryLocation W20192785271 @default.
- W2019278527 hasRelatedWork W1007066280 @default.
- W2019278527 hasRelatedWork W2007877379 @default.
- W2019278527 hasRelatedWork W2011886482 @default.
- W2019278527 hasRelatedWork W2024448984 @default.
- W2019278527 hasRelatedWork W2029712917 @default.
- W2019278527 hasRelatedWork W2071738309 @default.
- W2019278527 hasRelatedWork W2380097070 @default.
- W2019278527 hasRelatedWork W2616910507 @default.
- W2019278527 hasRelatedWork W3024037108 @default.
- W2019278527 hasRelatedWork W3164019264 @default.
- W2019278527 isParatext "false" @default.
- W2019278527 isRetracted "false" @default.
- W2019278527 magId "2019278527" @default.
- W2019278527 workType "article" @default.