Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019289784> ?p ?o ?g. }
- W2019289784 endingPage "81" @default.
- W2019289784 startingPage "67" @default.
- W2019289784 abstract "This paper reviews recent advances in 4D medical imaging (4DMI) and 4D radiation therapy (4DRT), which study, characterize, and minimize patient motion during the processes of imaging and radiotherapy. Patient motion is inevitably present in these processes, producing artifacts and uncertainties in target (lesion) identification, delineation, and localization. 4DMI includes time-resolved volumetric CT, MRI, PET, PET/CT, SPECT, and US imaging. To enhance the performance of these volumetric imaging techniques, parallel multi-detector array has been employed for acquiring image projections and the volumetric image reconstruction has been advanced from the 2D to the 3D tomography paradigm. The time information required for motion characterization in 4D imaging can be obtained either prospectively or retrospectively using respiratory gating or motion tracking techniques. The former acquires snapshot projections for reconstructing a motion-free image. The latter acquires image projections continuously with an associated timestamp indicating respiratory phases using external surrogates and sorts these projections into bins that represent different respiratory phases prior to reconstructing the cyclical series of 3D images. These methodologies generally work for all imaging modalities with variations in detailed implementation. In 4D CT imaging, both multi-slice CT (MSCT) and cone-beam CT (CBCT) are applicable in 4D imaging. In 4D MR imaging, parallel imaging with multi-coil-detectors has made 4D volumetric MRI possible. In 4D PET and SPECT, rigid and non-rigid motions can be corrected with aid of rigid and deformable registration, respectively, without suffering from low statistics due to signal binning. In 4D PET/CT and SPECT/CT, a single set of 4D images can be utilized for motion-free image creation, intrinsic registration, and attenuation correction. In 4D US, volumetric ultrasonography can be employed to monitor fetal heart beating with relatively high temporal resolution. 4DRT aims to track and compensate for target motion during radiation treatment, minimizing normal tissue injury, especially critical structures adjacent to the target, and/or maximizing radiation dose to the target. 4DRT requires 4DMI, 4D radiation treatment planning (4D RTP), and 4D radiation treatment delivery (4D RTD). Many concepts in 4DRT are borrowed, adapted and extended from existing image-guided radiation therapy (IGRT) and adaptive radiation therapy (ART). The advantage of 4DRT is its promise of sparing additional normal tissue by synchronizing the radiation beam with the moving target in real-time. 4DRT can be implemented differently depending upon how the time information is incorporated and utilized. In an ideal situation, the motion adaptive approach guided by 4D imaging should be applied to both RTP and RTD. However, until new automatic planning and motion feedback tools are developed for 4DRT, clinical implementation of ideal 4DRT will meet with limited success. However, simplified forms of 4DRT have been implemented with minor modifications of existing planning and delivery systems. The most common approach is the use of gating techniques in both imaging and treatment, so that the planned and treated target localizations are identical. In 4D planning, the use of a single planning CT image, which is representative of the statistical respiratory mean, seems preferable. In 4D delivery, on-site CBCT imaging or 3D US localization imaging for patient setup and internal fiducial markers for target motion tracking can significantly reduce the uncertainty in treatment delivery, providing improved normal tissue sparing. Most of the work on 4DRT can be regarded as a proof-of-principle and 4DRT is still in its early stage of development." @default.
- W2019289784 created "2016-06-24" @default.
- W2019289784 creator A5000713848 @default.
- W2019289784 creator A5013289157 @default.
- W2019289784 creator A5035162312 @default.
- W2019289784 creator A5036663495 @default.
- W2019289784 creator A5052796516 @default.
- W2019289784 creator A5066901984 @default.
- W2019289784 creator A5076213753 @default.
- W2019289784 creator A5088827470 @default.
- W2019289784 date "2008-02-01" @default.
- W2019289784 modified "2023-09-30" @default.
- W2019289784 title "Advances in 4D Medical Imaging and 4D Radiation Therapy" @default.
- W2019289784 cites W163411242 @default.
- W2019289784 cites W1963852403 @default.
- W2019289784 cites W1964766558 @default.
- W2019289784 cites W1966026703 @default.
- W2019289784 cites W1967172105 @default.
- W2019289784 cites W1968315864 @default.
- W2019289784 cites W1969342559 @default.
- W2019289784 cites W1970119692 @default.
- W2019289784 cites W1977035005 @default.
- W2019289784 cites W1977417401 @default.
- W2019289784 cites W1980099932 @default.
- W2019289784 cites W1980215637 @default.
- W2019289784 cites W1980807733 @default.
- W2019289784 cites W1982948710 @default.
- W2019289784 cites W1983552858 @default.
- W2019289784 cites W1986240831 @default.
- W2019289784 cites W1987734243 @default.
- W2019289784 cites W1992740553 @default.
- W2019289784 cites W1996796187 @default.
- W2019289784 cites W1999263719 @default.
- W2019289784 cites W1999438941 @default.
- W2019289784 cites W2007638243 @default.
- W2019289784 cites W2007758071 @default.
- W2019289784 cites W2009122996 @default.
- W2019289784 cites W2009530434 @default.
- W2019289784 cites W2009722017 @default.
- W2019289784 cites W2012474268 @default.
- W2019289784 cites W2017297729 @default.
- W2019289784 cites W2019407981 @default.
- W2019289784 cites W2020671330 @default.
- W2019289784 cites W2025553206 @default.
- W2019289784 cites W2028779567 @default.
- W2019289784 cites W2029272499 @default.
- W2019289784 cites W2029295978 @default.
- W2019289784 cites W2031019394 @default.
- W2019289784 cites W2033077254 @default.
- W2019289784 cites W2033581749 @default.
- W2019289784 cites W2034626586 @default.
- W2019289784 cites W2036364282 @default.
- W2019289784 cites W2040436950 @default.
- W2019289784 cites W2050147892 @default.
- W2019289784 cites W2052322414 @default.
- W2019289784 cites W2052910864 @default.
- W2019289784 cites W2053686964 @default.
- W2019289784 cites W2055777557 @default.
- W2019289784 cites W2063004980 @default.
- W2019289784 cites W2063019627 @default.
- W2019289784 cites W2065330156 @default.
- W2019289784 cites W2068333777 @default.
- W2019289784 cites W2068688115 @default.
- W2019289784 cites W2069361811 @default.
- W2019289784 cites W2070480087 @default.
- W2019289784 cites W2072276987 @default.
- W2019289784 cites W2075029962 @default.
- W2019289784 cites W2080649437 @default.
- W2019289784 cites W2081435195 @default.
- W2019289784 cites W2081931168 @default.
- W2019289784 cites W2083256347 @default.
- W2019289784 cites W2084877706 @default.
- W2019289784 cites W2088988219 @default.
- W2019289784 cites W2090139760 @default.
- W2019289784 cites W2091835984 @default.
- W2019289784 cites W2094229486 @default.
- W2019289784 cites W2095852481 @default.
- W2019289784 cites W2096423442 @default.
- W2019289784 cites W2100046516 @default.
- W2019289784 cites W2103698695 @default.
- W2019289784 cites W2104121925 @default.
- W2019289784 cites W2104807325 @default.
- W2019289784 cites W2107777789 @default.
- W2019289784 cites W2109462047 @default.
- W2019289784 cites W2109472311 @default.
- W2019289784 cites W2111418742 @default.
- W2019289784 cites W2114847037 @default.
- W2019289784 cites W2117559428 @default.
- W2019289784 cites W2119040171 @default.
- W2019289784 cites W2121562131 @default.
- W2019289784 cites W2123628286 @default.
- W2019289784 cites W2127480863 @default.
- W2019289784 cites W2130727232 @default.
- W2019289784 cites W2133025770 @default.
- W2019289784 cites W2133831685 @default.
- W2019289784 cites W2135330479 @default.
- W2019289784 cites W2139589586 @default.
- W2019289784 cites W2141232465 @default.