Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019294078> ?p ?o ?g. }
- W2019294078 endingPage "143" @default.
- W2019294078 startingPage "135" @default.
- W2019294078 abstract "A neural network-based strategy for detection of feedstock variations in a continuous pulp digester is presented. A feedforward two-layer perceptron network is trained to detect and isolate unmeasured variations in the feedstock. Training and validation data sets are generated using a rigorous first principles model. The most important issue discussed here is the design of the data set required to train the artificial neural network. Efficiency and limitation of such an approach are demonstrated using simulations." @default.
- W2019294078 created "2016-06-24" @default.
- W2019294078 creator A5022360864 @default.
- W2019294078 creator A5073351086 @default.
- W2019294078 creator A5081288689 @default.
- W2019294078 creator A5086300933 @default.
- W2019294078 date "2005-02-01" @default.
- W2019294078 modified "2023-10-12" @default.
- W2019294078 title "Neural network-based software sensor: training set design and application to a continuous pulp digester" @default.
- W2019294078 cites W1974552145 @default.
- W2019294078 cites W1980499438 @default.
- W2019294078 cites W1986453686 @default.
- W2019294078 cites W1994646886 @default.
- W2019294078 cites W1995550526 @default.
- W2019294078 cites W1996010635 @default.
- W2019294078 cites W2009622493 @default.
- W2019294078 cites W2014327683 @default.
- W2019294078 cites W2019928639 @default.
- W2019294078 cites W2042865119 @default.
- W2019294078 cites W2043001975 @default.
- W2019294078 cites W2050752192 @default.
- W2019294078 cites W2054267648 @default.
- W2019294078 cites W2078376347 @default.
- W2019294078 cites W2092291498 @default.
- W2019294078 cites W2122672490 @default.
- W2019294078 cites W2132029223 @default.
- W2019294078 cites W2135663228 @default.
- W2019294078 cites W2147129131 @default.
- W2019294078 cites W2154623820 @default.
- W2019294078 cites W2158393159 @default.
- W2019294078 cites W2163797172 @default.
- W2019294078 cites W2616073515 @default.
- W2019294078 cites W2616573327 @default.
- W2019294078 cites W4229948754 @default.
- W2019294078 doi "https://doi.org/10.1016/j.conengprac.2004.02.013" @default.
- W2019294078 hasPublicationYear "2005" @default.
- W2019294078 type Work @default.
- W2019294078 sameAs 2019294078 @default.
- W2019294078 citedByCount "43" @default.
- W2019294078 countsByYear W20192940782012 @default.
- W2019294078 countsByYear W20192940782013 @default.
- W2019294078 countsByYear W20192940782014 @default.
- W2019294078 countsByYear W20192940782015 @default.
- W2019294078 countsByYear W20192940782016 @default.
- W2019294078 countsByYear W20192940782017 @default.
- W2019294078 countsByYear W20192940782018 @default.
- W2019294078 countsByYear W20192940782019 @default.
- W2019294078 countsByYear W20192940782020 @default.
- W2019294078 countsByYear W20192940782021 @default.
- W2019294078 countsByYear W20192940782022 @default.
- W2019294078 countsByYear W20192940782023 @default.
- W2019294078 crossrefType "journal-article" @default.
- W2019294078 hasAuthorship W2019294078A5022360864 @default.
- W2019294078 hasAuthorship W2019294078A5073351086 @default.
- W2019294078 hasAuthorship W2019294078A5081288689 @default.
- W2019294078 hasAuthorship W2019294078A5086300933 @default.
- W2019294078 hasBestOaLocation W20192940782 @default.
- W2019294078 hasConcept C119857082 @default.
- W2019294078 hasConcept C127413603 @default.
- W2019294078 hasConcept C132964779 @default.
- W2019294078 hasConcept C133731056 @default.
- W2019294078 hasConcept C142724271 @default.
- W2019294078 hasConcept C154945302 @default.
- W2019294078 hasConcept C179717631 @default.
- W2019294078 hasConcept C188442228 @default.
- W2019294078 hasConcept C199360897 @default.
- W2019294078 hasConcept C2777904410 @default.
- W2019294078 hasConcept C38858127 @default.
- W2019294078 hasConcept C41008148 @default.
- W2019294078 hasConcept C47702885 @default.
- W2019294078 hasConcept C50644808 @default.
- W2019294078 hasConcept C51632099 @default.
- W2019294078 hasConcept C60908668 @default.
- W2019294078 hasConcept C71924100 @default.
- W2019294078 hasConceptScore W2019294078C119857082 @default.
- W2019294078 hasConceptScore W2019294078C127413603 @default.
- W2019294078 hasConceptScore W2019294078C132964779 @default.
- W2019294078 hasConceptScore W2019294078C133731056 @default.
- W2019294078 hasConceptScore W2019294078C142724271 @default.
- W2019294078 hasConceptScore W2019294078C154945302 @default.
- W2019294078 hasConceptScore W2019294078C179717631 @default.
- W2019294078 hasConceptScore W2019294078C188442228 @default.
- W2019294078 hasConceptScore W2019294078C199360897 @default.
- W2019294078 hasConceptScore W2019294078C2777904410 @default.
- W2019294078 hasConceptScore W2019294078C38858127 @default.
- W2019294078 hasConceptScore W2019294078C41008148 @default.
- W2019294078 hasConceptScore W2019294078C47702885 @default.
- W2019294078 hasConceptScore W2019294078C50644808 @default.
- W2019294078 hasConceptScore W2019294078C51632099 @default.
- W2019294078 hasConceptScore W2019294078C60908668 @default.
- W2019294078 hasConceptScore W2019294078C71924100 @default.
- W2019294078 hasIssue "2" @default.
- W2019294078 hasLocation W20192940781 @default.
- W2019294078 hasLocation W20192940782 @default.
- W2019294078 hasLocation W20192940783 @default.
- W2019294078 hasLocation W20192940784 @default.
- W2019294078 hasLocation W20192940785 @default.
- W2019294078 hasOpenAccess W2019294078 @default.