Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019295231> ?p ?o ?g. }
- W2019295231 endingPage "1696" @default.
- W2019295231 startingPage "1685" @default.
- W2019295231 abstract "UV radiation is a major environmental factor that affects pigmentation in human skin and can eventually result in various types of UV-induced skin cancers. The effects of various wavelengths of UV on melanocytes and other types of skin cells in culture have been studied, but little is known about gene expression patterns in situ following in situ exposure of human skin to different types of UV (UVA and/or UVB). Paracrine factors expressed by keratinocytes and/or fibroblasts that affect skin pigmentation might be regulated differently by UV, as might their corresponding receptors expressed on melanocytes. To test the hypothesis that different mechanisms are involved in the pigmentary responses of the skin to different types of UV, we used immunohistochemical and whole human genome microarray analyses to characterize human skin in situ to examine how melanocyte-specific proteins and paracrine melanogenic factors are regulated by repetitive exposure to different types of UV compared with unexposed skin as a control. The results show that gene expression patterns induced by UVA or UVB are distinct—UVB eliciting dramatic increases in a large number of genes involved in pigmentation as well as in other cellular functions, whereas UVA had little or no effect on these. The expression patterns characterize the distinct responses of the skin to UVA or UVB, and identify several potential previously unidentified factors involved in UV-induced responses of human skin. UV radiation is a major environmental factor that affects pigmentation in human skin and can eventually result in various types of UV-induced skin cancers. The effects of various wavelengths of UV on melanocytes and other types of skin cells in culture have been studied, but little is known about gene expression patterns in situ following in situ exposure of human skin to different types of UV (UVA and/or UVB). Paracrine factors expressed by keratinocytes and/or fibroblasts that affect skin pigmentation might be regulated differently by UV, as might their corresponding receptors expressed on melanocytes. To test the hypothesis that different mechanisms are involved in the pigmentary responses of the skin to different types of UV, we used immunohistochemical and whole human genome microarray analyses to characterize human skin in situ to examine how melanocyte-specific proteins and paracrine melanogenic factors are regulated by repetitive exposure to different types of UV compared with unexposed skin as a control. The results show that gene expression patterns induced by UVA or UVB are distinct—UVB eliciting dramatic increases in a large number of genes involved in pigmentation as well as in other cellular functions, whereas UVA had little or no effect on these. The expression patterns characterize the distinct responses of the skin to UVA or UVB, and identify several potential previously unidentified factors involved in UV-induced responses of human skin. delayed tanning minimal erythema dose solar-simulated radiation tyrosinase" @default.
- W2019295231 created "2016-06-24" @default.
- W2019295231 creator A5002314484 @default.
- W2019295231 creator A5012335050 @default.
- W2019295231 creator A5016305846 @default.
- W2019295231 creator A5019699766 @default.
- W2019295231 creator A5031862428 @default.
- W2019295231 creator A5051769953 @default.
- W2019295231 creator A5073538962 @default.
- W2019295231 creator A5077809859 @default.
- W2019295231 date "2010-06-01" @default.
- W2019295231 modified "2023-10-16" @default.
- W2019295231 title "Regulation of Human Skin Pigmentation in situ by Repetitive UV Exposure: Molecular Characterization of Responses to UVA and/or UVB" @default.
- W2019295231 cites W1488294447 @default.
- W2019295231 cites W1511263364 @default.
- W2019295231 cites W1964895626 @default.
- W2019295231 cites W1964897985 @default.
- W2019295231 cites W1966167305 @default.
- W2019295231 cites W1968344694 @default.
- W2019295231 cites W1971050728 @default.
- W2019295231 cites W1971239441 @default.
- W2019295231 cites W1973021649 @default.
- W2019295231 cites W1973053968 @default.
- W2019295231 cites W1973597969 @default.
- W2019295231 cites W1981284335 @default.
- W2019295231 cites W1981872005 @default.
- W2019295231 cites W1982571441 @default.
- W2019295231 cites W1988489437 @default.
- W2019295231 cites W1995076534 @default.
- W2019295231 cites W2000890539 @default.
- W2019295231 cites W2003258166 @default.
- W2019295231 cites W2006809167 @default.
- W2019295231 cites W2010684135 @default.
- W2019295231 cites W2012846873 @default.
- W2019295231 cites W2020055953 @default.
- W2019295231 cites W2022128518 @default.
- W2019295231 cites W2023367024 @default.
- W2019295231 cites W2031951021 @default.
- W2019295231 cites W2036500143 @default.
- W2019295231 cites W2040227971 @default.
- W2019295231 cites W2045250453 @default.
- W2019295231 cites W2047241095 @default.
- W2019295231 cites W2048566663 @default.
- W2019295231 cites W2052156954 @default.
- W2019295231 cites W2054435056 @default.
- W2019295231 cites W2058549612 @default.
- W2019295231 cites W2059287983 @default.
- W2019295231 cites W2061929833 @default.
- W2019295231 cites W2073549690 @default.
- W2019295231 cites W2074961267 @default.
- W2019295231 cites W2078186614 @default.
- W2019295231 cites W2082224552 @default.
- W2019295231 cites W2096694332 @default.
- W2019295231 cites W2100409705 @default.
- W2019295231 cites W2102140771 @default.
- W2019295231 cites W2109349283 @default.
- W2019295231 cites W2122683221 @default.
- W2019295231 cites W2138112259 @default.
- W2019295231 cites W2156970390 @default.
- W2019295231 cites W2161080185 @default.
- W2019295231 cites W2170984819 @default.
- W2019295231 cites W2397979146 @default.
- W2019295231 cites W2408867060 @default.
- W2019295231 doi "https://doi.org/10.1038/jid.2010.5" @default.
- W2019295231 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3478754" @default.
- W2019295231 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20147966" @default.
- W2019295231 hasPublicationYear "2010" @default.
- W2019295231 type Work @default.
- W2019295231 sameAs 2019295231 @default.
- W2019295231 citedByCount "81" @default.
- W2019295231 countsByYear W20192952312012 @default.
- W2019295231 countsByYear W20192952312013 @default.
- W2019295231 countsByYear W20192952312014 @default.
- W2019295231 countsByYear W20192952312015 @default.
- W2019295231 countsByYear W20192952312016 @default.
- W2019295231 countsByYear W20192952312017 @default.
- W2019295231 countsByYear W20192952312018 @default.
- W2019295231 countsByYear W20192952312019 @default.
- W2019295231 countsByYear W20192952312020 @default.
- W2019295231 countsByYear W20192952312021 @default.
- W2019295231 countsByYear W20192952312022 @default.
- W2019295231 countsByYear W20192952312023 @default.
- W2019295231 crossrefType "journal-article" @default.
- W2019295231 hasAuthorship W2019295231A5002314484 @default.
- W2019295231 hasAuthorship W2019295231A5012335050 @default.
- W2019295231 hasAuthorship W2019295231A5016305846 @default.
- W2019295231 hasAuthorship W2019295231A5019699766 @default.
- W2019295231 hasAuthorship W2019295231A5031862428 @default.
- W2019295231 hasAuthorship W2019295231A5051769953 @default.
- W2019295231 hasAuthorship W2019295231A5073538962 @default.
- W2019295231 hasAuthorship W2019295231A5077809859 @default.
- W2019295231 hasBestOaLocation W20192952311 @default.
- W2019295231 hasConcept C104317684 @default.
- W2019295231 hasConcept C107538193 @default.
- W2019295231 hasConcept C150194340 @default.
- W2019295231 hasConcept C16005928 @default.
- W2019295231 hasConcept C170493617 @default.
- W2019295231 hasConcept C178790620 @default.