Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019298320> ?p ?o ?g. }
- W2019298320 abstract "The method of fundamental solutions (MFS) is a meshless method for the solution of boundary value problems and has recently been proposed as a simple and efficient method for the solution of Stokes flow problems. The MFS approximates the solution by an expansion of fundamental solutions whose singularities are located outside the flow domain. Typically, the source points (i.e. the singularities of the fundamental solutions) are confined to a smooth source layer embracing the flow domain. This monolayer implementation of the MFS (monolayer MFS) depends strongly on the location of the user-defined source points: On the one hand, increasing the distance of the source points from the boundary tends to increase the convergence rate. On the other hand, this may limit the achievable accuracy. This often results in an unfavorable compromise between the convergence rate and the achievable accuracy of the MFS. The idea behind the present work is that a multilayer implementation of the MFS (multilayer MFS) can improve the robustness of the MFS by efficiently resolving different scales of the solution by source layers at different distances from the boundary. We propose a block greedy-QR algorithm (BGQRa) which exploits this property in a multilevel fashion. The proposed multilayer MFS is much more robust than the monolayer MFS and can compute Stokes flows on general two- and three-dimensional domains. It converges rapidly and yields high levels of accuracy by combining the properties of distant and close source points. The block algorithm alleviates the overhead of multiple source layers and allows the multilayer MFS to outperform the monolayer MFS." @default.
- W2019298320 created "2016-06-24" @default.
- W2019298320 creator A5045838242 @default.
- W2019298320 creator A5070278540 @default.
- W2019298320 creator A5073450212 @default.
- W2019298320 date "2012-07-01" @default.
- W2019298320 modified "2023-09-24" @default.
- W2019298320 title "A multilayer method of fundamental solutions for Stokes flow problems" @default.
- W2019298320 cites W1507435371 @default.
- W2019298320 cites W1966095124 @default.
- W2019298320 cites W1995552579 @default.
- W2019298320 cites W1997186310 @default.
- W2019298320 cites W2002537871 @default.
- W2019298320 cites W2010667748 @default.
- W2019298320 cites W2014377581 @default.
- W2019298320 cites W2021198545 @default.
- W2019298320 cites W2021282491 @default.
- W2019298320 cites W2021385478 @default.
- W2019298320 cites W2022056154 @default.
- W2019298320 cites W2022219400 @default.
- W2019298320 cites W2022598530 @default.
- W2019298320 cites W2023626109 @default.
- W2019298320 cites W2023829173 @default.
- W2019298320 cites W2023938950 @default.
- W2019298320 cites W2025393371 @default.
- W2019298320 cites W2025921648 @default.
- W2019298320 cites W2027083739 @default.
- W2019298320 cites W2027625003 @default.
- W2019298320 cites W2029287136 @default.
- W2019298320 cites W2029972444 @default.
- W2019298320 cites W2030097360 @default.
- W2019298320 cites W2032998666 @default.
- W2019298320 cites W2038690809 @default.
- W2019298320 cites W2041159250 @default.
- W2019298320 cites W2046569913 @default.
- W2019298320 cites W2050312456 @default.
- W2019298320 cites W2052948662 @default.
- W2019298320 cites W2053010169 @default.
- W2019298320 cites W2053504235 @default.
- W2019298320 cites W2053975655 @default.
- W2019298320 cites W2059762939 @default.
- W2019298320 cites W2059771256 @default.
- W2019298320 cites W2062486712 @default.
- W2019298320 cites W2070264380 @default.
- W2019298320 cites W2077469570 @default.
- W2019298320 cites W2082914631 @default.
- W2019298320 cites W2089612054 @default.
- W2019298320 cites W2096282572 @default.
- W2019298320 cites W2099637599 @default.
- W2019298320 cites W2104587561 @default.
- W2019298320 cites W2110492414 @default.
- W2019298320 cites W2132286679 @default.
- W2019298320 cites W2954747132 @default.
- W2019298320 cites W69932122 @default.
- W2019298320 doi "https://doi.org/10.1016/j.jcp.2012.05.023" @default.
- W2019298320 hasPublicationYear "2012" @default.
- W2019298320 type Work @default.
- W2019298320 sameAs 2019298320 @default.
- W2019298320 citedByCount "7" @default.
- W2019298320 countsByYear W20192983202013 @default.
- W2019298320 countsByYear W20192983202014 @default.
- W2019298320 countsByYear W20192983202016 @default.
- W2019298320 countsByYear W20192983202018 @default.
- W2019298320 countsByYear W20192983202019 @default.
- W2019298320 countsByYear W20192983202020 @default.
- W2019298320 countsByYear W20192983202021 @default.
- W2019298320 crossrefType "journal-article" @default.
- W2019298320 hasAuthorship W2019298320A5045838242 @default.
- W2019298320 hasAuthorship W2019298320A5070278540 @default.
- W2019298320 hasAuthorship W2019298320A5073450212 @default.
- W2019298320 hasConcept C104317684 @default.
- W2019298320 hasConcept C11413529 @default.
- W2019298320 hasConcept C121332964 @default.
- W2019298320 hasConcept C126255220 @default.
- W2019298320 hasConcept C127162648 @default.
- W2019298320 hasConcept C12843 @default.
- W2019298320 hasConcept C134306372 @default.
- W2019298320 hasConcept C135628077 @default.
- W2019298320 hasConcept C182310444 @default.
- W2019298320 hasConcept C185592680 @default.
- W2019298320 hasConcept C19191322 @default.
- W2019298320 hasConcept C2524010 @default.
- W2019298320 hasConcept C28826006 @default.
- W2019298320 hasConcept C31258907 @default.
- W2019298320 hasConcept C33923547 @default.
- W2019298320 hasConcept C38349280 @default.
- W2019298320 hasConcept C41008148 @default.
- W2019298320 hasConcept C48395688 @default.
- W2019298320 hasConcept C55493867 @default.
- W2019298320 hasConcept C57869625 @default.
- W2019298320 hasConcept C62354387 @default.
- W2019298320 hasConcept C63479239 @default.
- W2019298320 hasConcept C63632240 @default.
- W2019298320 hasConcept C82047721 @default.
- W2019298320 hasConcept C97355855 @default.
- W2019298320 hasConceptScore W2019298320C104317684 @default.
- W2019298320 hasConceptScore W2019298320C11413529 @default.
- W2019298320 hasConceptScore W2019298320C121332964 @default.
- W2019298320 hasConceptScore W2019298320C126255220 @default.
- W2019298320 hasConceptScore W2019298320C127162648 @default.