Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019299687> ?p ?o ?g. }
- W2019299687 endingPage "2745" @default.
- W2019299687 startingPage "2713" @default.
- W2019299687 abstract "Abstract A one-dimensional ecosystem model was developed for the equatorial Pacific upwelling system, and the model was used to study nitrogen and silicon cycle in the equatorial Pacific. The ecosystem model consisted of 10 components (nitrate, silicate, ammonium, small phytoplankton, diatom, micro- and meso-zooplankton, detrital nitrogen and silicon, and total CO2). The ecosystem model was forced by the area-averaged (5°S–5°N, 90°W–180°, the Wyrtki Box) annual mean upwelling velocity and vertical diffusivity obtained from a three-dimensional circulation model. The model was capable of reproducing the low-silicate, high-nitrate, and low-chlorophyll (LSHNLC) conditions in the equatorial Pacific. The linkage to carbon cycle was through the consumption of assimilated nitrate and silicate (i.e. new productions). Model simulations demonstrated that low-silicate concentration in the equatorial Pacific limits production of diatoms, and it resulted in low percentage of diatoms, 16%, in the total phytoplankton biomass. In the area of 5°S–5°N and 90°W–180°, the model produced an estimated sea-to-air CO2 flux of 4.3 mol m−2 yr−1, which is consistent with the observed results ranging of 1.0–4.5 mol m−2 yr−1. The ammonium inhibition played an important role in determining the nitrogen cycle in the model. The modeled surface nitrate concentration could increase by a factor of 10 (from 0.8 to 8.0 mmol m−3) when the strength of the ammonium inhibition increased from ψ=1.0 to 10.0 (mmol m−3)–1. The effects of both micro- and meso-zooplankton grazing were tested by varying the micro- and meso-zooplankton maximum grazing rates, G1max and G2max. The modeled results were quite sensitive to the zooplankton grazing parameters. The current model considered the role of iron implicitly through the parameters that determine the growth rate of diatoms. Several iron-enrichment experiments were conducted by changing the parameter α (the initial slope of the photosynthetic rate over irradiance at low irradiance), KSi(OH)4 (half-saturation concentration of silicate uptake by diatom), and μ2max (the potential maximum specific diatom growth rate) in the regulation terms of silicate uptake by diatom. Within the first 5 days in the modeled iron-enrichment experiment, the diatom biomass increased from 0.08 to 2.5 mmol m−3, more than a factor of 30 increase. But the diatom populations crashed 2 weeks after the experiment started, due to exhaustion of available silicate and increased mesozooplankton population. The modeled iron-enrichment experiments produced several ecological behaviors similar to these observed during the IronEx-2." @default.
- W2019299687 created "2016-06-24" @default.
- W2019299687 creator A5025894394 @default.
- W2019299687 creator A5054277973 @default.
- W2019299687 creator A5057798665 @default.
- W2019299687 creator A5062232623 @default.
- W2019299687 creator A5076377983 @default.
- W2019299687 date "2002-01-01" @default.
- W2019299687 modified "2023-10-17" @default.
- W2019299687 title "One-dimensional ecosystem model of the equatorial Pacific upwelling system. Part I: model development and silicon and nitrogen cycle" @default.
- W2019299687 cites W1522127495 @default.
- W2019299687 cites W1554075286 @default.
- W2019299687 cites W1603575405 @default.
- W2019299687 cites W1637244524 @default.
- W2019299687 cites W1965149036 @default.
- W2019299687 cites W1966202473 @default.
- W2019299687 cites W1966569540 @default.
- W2019299687 cites W1970425542 @default.
- W2019299687 cites W1973259369 @default.
- W2019299687 cites W1973546464 @default.
- W2019299687 cites W1974849759 @default.
- W2019299687 cites W1976278501 @default.
- W2019299687 cites W1982660212 @default.
- W2019299687 cites W1983975787 @default.
- W2019299687 cites W1986081344 @default.
- W2019299687 cites W1986485711 @default.
- W2019299687 cites W1986560240 @default.
- W2019299687 cites W1990337497 @default.
- W2019299687 cites W1992224726 @default.
- W2019299687 cites W1996606404 @default.
- W2019299687 cites W2000342130 @default.
- W2019299687 cites W2006234423 @default.
- W2019299687 cites W2009187994 @default.
- W2019299687 cites W2011310468 @default.
- W2019299687 cites W2011737307 @default.
- W2019299687 cites W2014691272 @default.
- W2019299687 cites W2018796973 @default.
- W2019299687 cites W2026249075 @default.
- W2019299687 cites W2031050703 @default.
- W2019299687 cites W2031127053 @default.
- W2019299687 cites W2031540014 @default.
- W2019299687 cites W2033100350 @default.
- W2019299687 cites W2037126403 @default.
- W2019299687 cites W2037216249 @default.
- W2019299687 cites W2039257462 @default.
- W2019299687 cites W2039781035 @default.
- W2019299687 cites W2042453006 @default.
- W2019299687 cites W2044005176 @default.
- W2019299687 cites W2046402607 @default.
- W2019299687 cites W2048500547 @default.
- W2019299687 cites W2050291586 @default.
- W2019299687 cites W2053660667 @default.
- W2019299687 cites W2053834856 @default.
- W2019299687 cites W2054292096 @default.
- W2019299687 cites W2058523918 @default.
- W2019299687 cites W2067819027 @default.
- W2019299687 cites W2068640276 @default.
- W2019299687 cites W2069682953 @default.
- W2019299687 cites W2071870883 @default.
- W2019299687 cites W2076994917 @default.
- W2019299687 cites W2077769416 @default.
- W2019299687 cites W2078815403 @default.
- W2019299687 cites W2087486717 @default.
- W2019299687 cites W2087954427 @default.
- W2019299687 cites W2089101113 @default.
- W2019299687 cites W2089573998 @default.
- W2019299687 cites W2089650688 @default.
- W2019299687 cites W2089905013 @default.
- W2019299687 cites W2093565858 @default.
- W2019299687 cites W2095363507 @default.
- W2019299687 cites W2096285472 @default.
- W2019299687 cites W2099290206 @default.
- W2019299687 cites W2110130139 @default.
- W2019299687 cites W2117289816 @default.
- W2019299687 cites W2118856823 @default.
- W2019299687 cites W2125252128 @default.
- W2019299687 cites W2125416759 @default.
- W2019299687 cites W2145668011 @default.
- W2019299687 cites W2149058196 @default.
- W2019299687 cites W2150378826 @default.
- W2019299687 cites W2152473128 @default.
- W2019299687 cites W2154494747 @default.
- W2019299687 cites W2160158003 @default.
- W2019299687 cites W2165637241 @default.
- W2019299687 cites W4238682875 @default.
- W2019299687 cites W4245377653 @default.
- W2019299687 cites W6618182 @default.
- W2019299687 doi "https://doi.org/10.1016/s0967-0645(02)00055-3" @default.
- W2019299687 hasPublicationYear "2002" @default.
- W2019299687 type Work @default.
- W2019299687 sameAs 2019299687 @default.
- W2019299687 citedByCount "241" @default.
- W2019299687 countsByYear W20192996872012 @default.
- W2019299687 countsByYear W20192996872013 @default.
- W2019299687 countsByYear W20192996872014 @default.
- W2019299687 countsByYear W20192996872015 @default.
- W2019299687 countsByYear W20192996872016 @default.
- W2019299687 countsByYear W20192996872017 @default.