Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019317320> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2019317320 abstract "Computer models of real world objects and scenes are essential in a large and rapidly growing number of applications, hence motivating the automatic generation of models from images. While the completeness and accuracy of extracted models may be essential in some cases, in applications such as image-based view synthesis in which the goal is to produce new views of a scene, partial models with limited accuracy may produce satisfactory results. In this paper a method is described for partial image based-modeling which relies on a sparse set of matching points between several views. While a sparse set of matching points may be obtained more reliably, it provides only partial information on the reconstructed scene and uses only a small subset of the information contained in the images. Consequently, in the proposed approach, correlation constraints are used in order to test hypotheses in projective space so as to improve the correctness of the reconstructed model. The correlation constraints are based on all the image pixels belonging to the convex hull of the matched point set, thus utilizing a large amount of the information contained in the images. The same constraints are then used to modify the reconstructed model by detecting zones in which the model should be broken into several parts in order to accommodate occlusions in the scene and in order to smooth planar surfaces composed of several polygons. The paper provides demonstration of the application of the proposed approach to image-based view synthesis and geometric distortion correction in document images." @default.
- W2019317320 created "2016-06-24" @default.
- W2019317320 creator A5023698748 @default.
- W2019317320 date "2001-11-02" @default.
- W2019317320 modified "2023-09-23" @default.
- W2019317320 title "<title>Correlation-constrained approach to partial image-based modeling</title>" @default.
- W2019317320 doi "https://doi.org/10.1117/12.447287" @default.
- W2019317320 hasPublicationYear "2001" @default.
- W2019317320 type Work @default.
- W2019317320 sameAs 2019317320 @default.
- W2019317320 citedByCount "0" @default.
- W2019317320 crossrefType "proceedings-article" @default.
- W2019317320 hasAuthorship W2019317320A5023698748 @default.
- W2019317320 hasConcept C105795698 @default.
- W2019317320 hasConcept C112680207 @default.
- W2019317320 hasConcept C11413529 @default.
- W2019317320 hasConcept C115961682 @default.
- W2019317320 hasConcept C126780896 @default.
- W2019317320 hasConcept C153180895 @default.
- W2019317320 hasConcept C154945302 @default.
- W2019317320 hasConcept C160633673 @default.
- W2019317320 hasConcept C165064840 @default.
- W2019317320 hasConcept C177264268 @default.
- W2019317320 hasConcept C194257627 @default.
- W2019317320 hasConcept C199360897 @default.
- W2019317320 hasConcept C206194317 @default.
- W2019317320 hasConcept C23379248 @default.
- W2019317320 hasConcept C2524010 @default.
- W2019317320 hasConcept C2776257435 @default.
- W2019317320 hasConcept C31258907 @default.
- W2019317320 hasConcept C31972630 @default.
- W2019317320 hasConcept C33923547 @default.
- W2019317320 hasConcept C41008148 @default.
- W2019317320 hasConcept C55439883 @default.
- W2019317320 hasConceptScore W2019317320C105795698 @default.
- W2019317320 hasConceptScore W2019317320C112680207 @default.
- W2019317320 hasConceptScore W2019317320C11413529 @default.
- W2019317320 hasConceptScore W2019317320C115961682 @default.
- W2019317320 hasConceptScore W2019317320C126780896 @default.
- W2019317320 hasConceptScore W2019317320C153180895 @default.
- W2019317320 hasConceptScore W2019317320C154945302 @default.
- W2019317320 hasConceptScore W2019317320C160633673 @default.
- W2019317320 hasConceptScore W2019317320C165064840 @default.
- W2019317320 hasConceptScore W2019317320C177264268 @default.
- W2019317320 hasConceptScore W2019317320C194257627 @default.
- W2019317320 hasConceptScore W2019317320C199360897 @default.
- W2019317320 hasConceptScore W2019317320C206194317 @default.
- W2019317320 hasConceptScore W2019317320C23379248 @default.
- W2019317320 hasConceptScore W2019317320C2524010 @default.
- W2019317320 hasConceptScore W2019317320C2776257435 @default.
- W2019317320 hasConceptScore W2019317320C31258907 @default.
- W2019317320 hasConceptScore W2019317320C31972630 @default.
- W2019317320 hasConceptScore W2019317320C33923547 @default.
- W2019317320 hasConceptScore W2019317320C41008148 @default.
- W2019317320 hasConceptScore W2019317320C55439883 @default.
- W2019317320 hasLocation W20193173201 @default.
- W2019317320 hasOpenAccess W2019317320 @default.
- W2019317320 hasPrimaryLocation W20193173201 @default.
- W2019317320 hasRelatedWork W1598290781 @default.
- W2019317320 hasRelatedWork W1841847813 @default.
- W2019317320 hasRelatedWork W1984315854 @default.
- W2019317320 hasRelatedWork W2048518944 @default.
- W2019317320 hasRelatedWork W2101703235 @default.
- W2019317320 hasRelatedWork W2373807803 @default.
- W2019317320 hasRelatedWork W2574052219 @default.
- W2019317320 hasRelatedWork W2737258383 @default.
- W2019317320 hasRelatedWork W2996602101 @default.
- W2019317320 hasRelatedWork W4205197787 @default.
- W2019317320 isParatext "false" @default.
- W2019317320 isRetracted "false" @default.
- W2019317320 magId "2019317320" @default.
- W2019317320 workType "article" @default.