Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019331318> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2019331318 endingPage "554" @default.
- W2019331318 startingPage "553" @default.
- W2019331318 abstract "We consider preconditioned subspace iterations for the numerical solution of discretized elliptic eigenvalue problems. For these iterative solvers, the convergence theory is still an incomplete puzzle. We generalize some results from the classical convergence theory of inverse subspace iterations, as given by Parlett, and some recent results on the convergence of preconditioned vector iterations. To this end, we use a geometric cone representation and prove some new trigonometric inequalities for subspace angles and canonical angles. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)" @default.
- W2019331318 created "2016-06-24" @default.
- W2019331318 creator A5028066219 @default.
- W2019331318 date "2010-11-16" @default.
- W2019331318 modified "2023-10-16" @default.
- W2019331318 title "On the Convergence Theory of Preconditioned Subspace Iterations for Eigenvalue Problems" @default.
- W2019331318 cites W2109443444 @default.
- W2019331318 cites W2156553331 @default.
- W2019331318 doi "https://doi.org/10.1002/pamm.201010269" @default.
- W2019331318 hasPublicationYear "2010" @default.
- W2019331318 type Work @default.
- W2019331318 sameAs 2019331318 @default.
- W2019331318 citedByCount "0" @default.
- W2019331318 crossrefType "journal-article" @default.
- W2019331318 hasAuthorship W2019331318A5028066219 @default.
- W2019331318 hasBestOaLocation W20193313181 @default.
- W2019331318 hasConcept C121332964 @default.
- W2019331318 hasConcept C126255220 @default.
- W2019331318 hasConcept C134306372 @default.
- W2019331318 hasConcept C147060835 @default.
- W2019331318 hasConcept C158693339 @default.
- W2019331318 hasConcept C159694833 @default.
- W2019331318 hasConcept C162324750 @default.
- W2019331318 hasConcept C2777303404 @default.
- W2019331318 hasConcept C28826006 @default.
- W2019331318 hasConcept C32834561 @default.
- W2019331318 hasConcept C33923547 @default.
- W2019331318 hasConcept C50522688 @default.
- W2019331318 hasConcept C62520636 @default.
- W2019331318 hasConcept C73000952 @default.
- W2019331318 hasConceptScore W2019331318C121332964 @default.
- W2019331318 hasConceptScore W2019331318C126255220 @default.
- W2019331318 hasConceptScore W2019331318C134306372 @default.
- W2019331318 hasConceptScore W2019331318C147060835 @default.
- W2019331318 hasConceptScore W2019331318C158693339 @default.
- W2019331318 hasConceptScore W2019331318C159694833 @default.
- W2019331318 hasConceptScore W2019331318C162324750 @default.
- W2019331318 hasConceptScore W2019331318C2777303404 @default.
- W2019331318 hasConceptScore W2019331318C28826006 @default.
- W2019331318 hasConceptScore W2019331318C32834561 @default.
- W2019331318 hasConceptScore W2019331318C33923547 @default.
- W2019331318 hasConceptScore W2019331318C50522688 @default.
- W2019331318 hasConceptScore W2019331318C62520636 @default.
- W2019331318 hasConceptScore W2019331318C73000952 @default.
- W2019331318 hasIssue "1" @default.
- W2019331318 hasLocation W20193313181 @default.
- W2019331318 hasOpenAccess W2019331318 @default.
- W2019331318 hasPrimaryLocation W20193313181 @default.
- W2019331318 hasRelatedWork W2006651457 @default.
- W2019331318 hasRelatedWork W2057783254 @default.
- W2019331318 hasRelatedWork W2083669091 @default.
- W2019331318 hasRelatedWork W2099169296 @default.
- W2019331318 hasRelatedWork W2118497999 @default.
- W2019331318 hasRelatedWork W3098728793 @default.
- W2019331318 hasRelatedWork W3134028852 @default.
- W2019331318 hasRelatedWork W3140898507 @default.
- W2019331318 hasRelatedWork W4360834303 @default.
- W2019331318 hasRelatedWork W1997716701 @default.
- W2019331318 hasVolume "10" @default.
- W2019331318 isParatext "false" @default.
- W2019331318 isRetracted "false" @default.
- W2019331318 magId "2019331318" @default.
- W2019331318 workType "article" @default.