Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019331368> ?p ?o ?g. }
- W2019331368 endingPage "163" @default.
- W2019331368 startingPage "149" @default.
- W2019331368 abstract "Coordination of diazines such as quinoxaline to transition metals stabilizes radical anions generated by chemical or electrochemical cathodic reduction. However, even though various sorts of radical anionic diazines have been subjected to spectroscopic investigations in the recent past, reports combining structural, solid-state electron paramagnetic resonance (EPR) and computational investigations of kinetically stable species are still missing. In this study, four radical anions derived from tricarbonylmanganese- and tricarbonylrhenium-bound quinoxaline chelates, embedded within a triple-decker architecture, have been prepared from neutral substrates by chemical reduction over alkaline metals (K, Rb); the electronic structure of the latter metalloorganic paramagnetic salts was investigated by the means of structural X-ray diffraction analysis, electrochemistry, solution and crystal EPR spectroscopy, and density functional theory (DFT). Unprecedented structures of three manganese-bound and one rhenium-bound quinoxaline-derived paramagnetic salts were obtained from solutions of the corresponding radical anions crystallized in the presence of cryptand 222. It is inferred from a comparative study of the structures of anionic and neutral quinoxaline complexes that reduction does not have any significant impact over the coordination mode of the metal centers and over the overall geometry of the triple-decker architecture. The most notable changes in the radical-anionic metalloorganic species, as compared to the neutral parent molecules, comprise a slight hapticity shift of the metal-bound benzyl moiety and a weak intraannular distortion of the quinoxalyl core. Single-crystal EPR experiments carried out with the rhenium and manganese compounds produced the respective anisotropic g tensor, which was found in each case to be essentially located at the quinoxalyl fragment. Computations, carried out using DFT methods (B3LYP−LANL2DZ and Becke−Perdew−TZP), corroborated the features suggested by structural analysis. Single-point calculation using the B3LYP functional and various basis sets [LANL2DZ, 6-31G(d), 6-311+G(d), and 6-311+G(2d,p)] provided us with values of anisotropic g tensors and hyperfine coupling constants consistent with those determined experimentally. It is inferred from this study that the two metal centers bound to the nitrogen atoms of the quinoxalyl core contribute in the lowering of the HOMO−LUMO gap in the neutral species. The triple-decker arrangement, which combines chelation of the metal, steric protection, and encapsulation of the central quinoxalyl core, is a stabilizing factor that provides a long-lived character to the radical-anionic species." @default.
- W2019331368 created "2016-06-24" @default.
- W2019331368 creator A5010903556 @default.
- W2019331368 creator A5021046853 @default.
- W2019331368 creator A5025934288 @default.
- W2019331368 creator A5031864865 @default.
- W2019331368 creator A5054675313 @default.
- W2019331368 creator A5058483083 @default.
- W2019331368 creator A5070991705 @default.
- W2019331368 creator A5089677613 @default.
- W2019331368 date "2008-12-03" @default.
- W2019331368 modified "2023-10-18" @default.
- W2019331368 title "Stable and Highly Persistent Quinoxaline-Centered Metalloorganic Radical Anions: Preparation, Structural, Spectroscopic, and Computational Investigations" @default.
- W2019331368 cites W1524729581 @default.
- W2019331368 cites W1749277125 @default.
- W2019331368 cites W1910541460 @default.
- W2019331368 cites W1966182479 @default.
- W2019331368 cites W1969235896 @default.
- W2019331368 cites W1971348293 @default.
- W2019331368 cites W1972096965 @default.
- W2019331368 cites W1973537889 @default.
- W2019331368 cites W1977281862 @default.
- W2019331368 cites W1979031033 @default.
- W2019331368 cites W1982210246 @default.
- W2019331368 cites W1986688222 @default.
- W2019331368 cites W1989500927 @default.
- W2019331368 cites W1994698352 @default.
- W2019331368 cites W1994855873 @default.
- W2019331368 cites W2005534063 @default.
- W2019331368 cites W2023271753 @default.
- W2019331368 cites W2030709618 @default.
- W2019331368 cites W2031160627 @default.
- W2019331368 cites W2037832728 @default.
- W2019331368 cites W2044412180 @default.
- W2019331368 cites W2046412723 @default.
- W2019331368 cites W2051050535 @default.
- W2019331368 cites W2054374887 @default.
- W2019331368 cites W2057190715 @default.
- W2019331368 cites W2059140271 @default.
- W2019331368 cites W2060217644 @default.
- W2019331368 cites W2060709438 @default.
- W2019331368 cites W2064376917 @default.
- W2019331368 cites W2066325205 @default.
- W2019331368 cites W2070377882 @default.
- W2019331368 cites W2075015982 @default.
- W2019331368 cites W2075211488 @default.
- W2019331368 cites W2075734354 @default.
- W2019331368 cites W2078683928 @default.
- W2019331368 cites W2080463791 @default.
- W2019331368 cites W2083158370 @default.
- W2019331368 cites W2095802514 @default.
- W2019331368 cites W2111719853 @default.
- W2019331368 cites W2111930956 @default.
- W2019331368 cites W2121237359 @default.
- W2019331368 cites W2138818947 @default.
- W2019331368 cites W2143981217 @default.
- W2019331368 cites W2148446865 @default.
- W2019331368 cites W2160737217 @default.
- W2019331368 cites W2951932022 @default.
- W2019331368 cites W2952847245 @default.
- W2019331368 cites W2953385006 @default.
- W2019331368 cites W4206543226 @default.
- W2019331368 doi "https://doi.org/10.1021/ic801434h" @default.
- W2019331368 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19053841" @default.
- W2019331368 hasPublicationYear "2008" @default.
- W2019331368 type Work @default.
- W2019331368 sameAs 2019331368 @default.
- W2019331368 citedByCount "16" @default.
- W2019331368 countsByYear W20193313682012 @default.
- W2019331368 countsByYear W20193313682016 @default.
- W2019331368 countsByYear W20193313682018 @default.
- W2019331368 countsByYear W20193313682019 @default.
- W2019331368 countsByYear W20193313682021 @default.
- W2019331368 countsByYear W20193313682022 @default.
- W2019331368 crossrefType "journal-article" @default.
- W2019331368 hasAuthorship W2019331368A5010903556 @default.
- W2019331368 hasAuthorship W2019331368A5021046853 @default.
- W2019331368 hasAuthorship W2019331368A5025934288 @default.
- W2019331368 hasAuthorship W2019331368A5031864865 @default.
- W2019331368 hasAuthorship W2019331368A5054675313 @default.
- W2019331368 hasAuthorship W2019331368A5058483083 @default.
- W2019331368 hasAuthorship W2019331368A5070991705 @default.
- W2019331368 hasAuthorship W2019331368A5089677613 @default.
- W2019331368 hasConcept C121332964 @default.
- W2019331368 hasConcept C178790620 @default.
- W2019331368 hasConcept C179104552 @default.
- W2019331368 hasConcept C185592680 @default.
- W2019331368 hasConcept C187961010 @default.
- W2019331368 hasConcept C2780362310 @default.
- W2019331368 hasConcept C46141821 @default.
- W2019331368 hasConcept C505216180 @default.
- W2019331368 hasConcept C528890316 @default.
- W2019331368 hasConcept C75473681 @default.
- W2019331368 hasConcept C8010536 @default.
- W2019331368 hasConceptScore W2019331368C121332964 @default.
- W2019331368 hasConceptScore W2019331368C178790620 @default.
- W2019331368 hasConceptScore W2019331368C179104552 @default.
- W2019331368 hasConceptScore W2019331368C185592680 @default.