Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019335053> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2019335053 endingPage "40" @default.
- W2019335053 startingPage "32" @default.
- W2019335053 abstract "magnetic resonance spectroscopic imaging (MRSI) can improve the accuracy of target delineation for gliomas, but it lacks the anatomic resolution needed for image fusion. This paper presents a simple protocol for fusing simulation computer tomography (CT) and MRSI images for glioma intensity‐modulated radiotherapy (IMRT), including a retrospective study of 12 patients. Each patient first underwent whole‐brain axial fluid‐attenuated‐inversion‐recovery (FLAIR) MRI (3 mm slice thickness, no spacing), followed by three‐dimensional (3D) MRSI measurements (TE/TR: ) of a user‐specified volume encompassing the extent of the tumor. The nominal voxel size of MRSI ranged from to . A system was developed to grade the tumor using the choline‐to‐creatine (Cho/Cr) ratios from each MRSI voxel. The merged MRSI images were then generated by replacing the Cho/Cr value of each MRSI voxel with intensities according to the Cho/Cr grades, and resampling the poorer‐resolution Cho/Cr map into the higher‐resolution FLAIR image space. The FUNCTOOL processing software was also used to create the screen‐dumped MRSI images in which these data were overlaid with each FLAIR MRI image. The screen‐dumped MRSI images were manually translated and fused with the FLAIR MRI images. Since the merged MRSI images were intrinsically fused with the FLAIR MRI images, they were also registered with the screen‐dumped MRSI images. The position of the MRSI volume on the merged MRSI images was compared with that of the screen‐dumped MRSI images and was shifted until agreement was within a predetermined tolerance. Three clinical target volumes (CTVs) were then contoured on the FLAIR MRI images corresponding to the Cho/Cr grades. Finally, the FLAIR MRI images were fused with the simulation CT images using a mutual‐information algorithm, yielding an IMRT plan that simultaneously delivers three different dose levels to the three CTVs. The image‐fusion protocol was tested on 12 (six high‐grade and six low‐grade) glioma patients. The average agreement of the MRSI volume position on the screen‐dumped MRSI images and the merged MRSI images was 0.29 mm with a standard deviation of 0.07 mm. Of all the voxels with Cho/Cr grade one or above, the distribution of Cho/Cr grade was found to correlate with the glioma grade from pathologic finding and is consistent with literature results indicating Cho/Cr elevation as a marker for malignancy. In conclusion, an image‐fusion protocol was developed that successfully incorporates MRSI information into the IMRT treatment plan for glioma." @default.
- W2019335053 created "2016-06-24" @default.
- W2019335053 creator A5009444012 @default.
- W2019335053 creator A5014356411 @default.
- W2019335053 creator A5025513836 @default.
- W2019335053 creator A5036062833 @default.
- W2019335053 creator A5049223435 @default.
- W2019335053 creator A5055305056 @default.
- W2019335053 creator A5058201781 @default.
- W2019335053 creator A5069902321 @default.
- W2019335053 creator A5080794141 @default.
- W2019335053 creator A5083922394 @default.
- W2019335053 creator A5090471062 @default.
- W2019335053 date "2005-12-19" @default.
- W2019335053 modified "2023-09-26" @default.
- W2019335053 title "Image-fusion of MR spectroscopic images for treatment planning of gliomas" @default.
- W2019335053 cites W1977208626 @default.
- W2019335053 cites W1991413275 @default.
- W2019335053 cites W1995577320 @default.
- W2019335053 cites W2003682441 @default.
- W2019335053 cites W2015536104 @default.
- W2019335053 cites W2036369046 @default.
- W2019335053 cites W2065438335 @default.
- W2019335053 cites W2079362850 @default.
- W2019335053 cites W2085970292 @default.
- W2019335053 cites W2086486486 @default.
- W2019335053 cites W2111968429 @default.
- W2019335053 cites W2151629136 @default.
- W2019335053 cites W2160560005 @default.
- W2019335053 cites W2315052252 @default.
- W2019335053 doi "https://doi.org/10.1118/1.2128497" @default.
- W2019335053 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16485406" @default.
- W2019335053 hasPublicationYear "2005" @default.
- W2019335053 type Work @default.
- W2019335053 sameAs 2019335053 @default.
- W2019335053 citedByCount "28" @default.
- W2019335053 countsByYear W20193350532013 @default.
- W2019335053 countsByYear W20193350532014 @default.
- W2019335053 countsByYear W20193350532015 @default.
- W2019335053 countsByYear W20193350532016 @default.
- W2019335053 countsByYear W20193350532018 @default.
- W2019335053 countsByYear W20193350532019 @default.
- W2019335053 countsByYear W20193350532022 @default.
- W2019335053 crossrefType "journal-article" @default.
- W2019335053 hasAuthorship W2019335053A5009444012 @default.
- W2019335053 hasAuthorship W2019335053A5014356411 @default.
- W2019335053 hasAuthorship W2019335053A5025513836 @default.
- W2019335053 hasAuthorship W2019335053A5036062833 @default.
- W2019335053 hasAuthorship W2019335053A5049223435 @default.
- W2019335053 hasAuthorship W2019335053A5055305056 @default.
- W2019335053 hasAuthorship W2019335053A5058201781 @default.
- W2019335053 hasAuthorship W2019335053A5069902321 @default.
- W2019335053 hasAuthorship W2019335053A5080794141 @default.
- W2019335053 hasAuthorship W2019335053A5083922394 @default.
- W2019335053 hasAuthorship W2019335053A5090471062 @default.
- W2019335053 hasConcept C101070640 @default.
- W2019335053 hasConcept C115961682 @default.
- W2019335053 hasConcept C126838900 @default.
- W2019335053 hasConcept C143409427 @default.
- W2019335053 hasConcept C154945302 @default.
- W2019335053 hasConcept C2989005 @default.
- W2019335053 hasConcept C41008148 @default.
- W2019335053 hasConcept C54170458 @default.
- W2019335053 hasConcept C69744172 @default.
- W2019335053 hasConcept C71924100 @default.
- W2019335053 hasConcept C96781048 @default.
- W2019335053 hasConceptScore W2019335053C101070640 @default.
- W2019335053 hasConceptScore W2019335053C115961682 @default.
- W2019335053 hasConceptScore W2019335053C126838900 @default.
- W2019335053 hasConceptScore W2019335053C143409427 @default.
- W2019335053 hasConceptScore W2019335053C154945302 @default.
- W2019335053 hasConceptScore W2019335053C2989005 @default.
- W2019335053 hasConceptScore W2019335053C41008148 @default.
- W2019335053 hasConceptScore W2019335053C54170458 @default.
- W2019335053 hasConceptScore W2019335053C69744172 @default.
- W2019335053 hasConceptScore W2019335053C71924100 @default.
- W2019335053 hasConceptScore W2019335053C96781048 @default.
- W2019335053 hasIssue "1" @default.
- W2019335053 hasLocation W20193350531 @default.
- W2019335053 hasLocation W20193350532 @default.
- W2019335053 hasOpenAccess W2019335053 @default.
- W2019335053 hasPrimaryLocation W20193350531 @default.
- W2019335053 hasRelatedWork W1981061645 @default.
- W2019335053 hasRelatedWork W2001364525 @default.
- W2019335053 hasRelatedWork W2015010652 @default.
- W2019335053 hasRelatedWork W2049314524 @default.
- W2019335053 hasRelatedWork W2066276376 @default.
- W2019335053 hasRelatedWork W2165532981 @default.
- W2019335053 hasRelatedWork W2170935972 @default.
- W2019335053 hasRelatedWork W2182873036 @default.
- W2019335053 hasRelatedWork W2473907555 @default.
- W2019335053 hasRelatedWork W4239862171 @default.
- W2019335053 hasVolume "33" @default.
- W2019335053 isParatext "false" @default.
- W2019335053 isRetracted "false" @default.
- W2019335053 magId "2019335053" @default.
- W2019335053 workType "article" @default.