Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019355665> ?p ?o ?g. }
- W2019355665 endingPage "129" @default.
- W2019355665 startingPage "120" @default.
- W2019355665 abstract "Most natural streams or rivers exhibit a compound or two-stage geometry consisting of a main channel and one or two floodplains. The discharge capacity of compound channels has an importance in flood defence schemes and in the economic development of floodplain areas for agriculture and parks. Therefore, the comprehensive stage–discharge model studies performed and different one or two-dimensional methods have been developed. In this study, the single-channel method (SCM), the divided-channel method (DCM), the coherence method (COHM), the exchange discharge method (EDM) and the Shiono–Knight method (SKM) have been compared with a multilayer perception neural network (MLP) with Levenberg–Marquardt algorithm. The results of the comparisons reveal that the artificial neural network (ANN) model gives slightly better statistical results than those of the COHM, EDM and these three give more accurate results than those of the SCM, DCM, and SKM." @default.
- W2019355665 created "2016-06-24" @default.
- W2019355665 creator A5005214333 @default.
- W2019355665 creator A5019536505 @default.
- W2019355665 creator A5020961960 @default.
- W2019355665 creator A5032186191 @default.
- W2019355665 date "2010-02-01" @default.
- W2019355665 modified "2023-10-18" @default.
- W2019355665 title "Comparison of an ANN approach with 1-D and 2-D methods for estimating discharge capacity of straight compound channels" @default.
- W2019355665 cites W1499301532 @default.
- W2019355665 cites W1968005953 @default.
- W2019355665 cites W1978020181 @default.
- W2019355665 cites W1990650271 @default.
- W2019355665 cites W1994460071 @default.
- W2019355665 cites W1995899768 @default.
- W2019355665 cites W2003756933 @default.
- W2019355665 cites W2006810061 @default.
- W2019355665 cites W2015640315 @default.
- W2019355665 cites W2016764823 @default.
- W2019355665 cites W2017893448 @default.
- W2019355665 cites W2018019693 @default.
- W2019355665 cites W2018857282 @default.
- W2019355665 cites W2022426423 @default.
- W2019355665 cites W2025590911 @default.
- W2019355665 cites W2027652121 @default.
- W2019355665 cites W2028130074 @default.
- W2019355665 cites W2031912421 @default.
- W2019355665 cites W2048565888 @default.
- W2019355665 cites W2056780161 @default.
- W2019355665 cites W2057788866 @default.
- W2019355665 cites W2063133994 @default.
- W2019355665 cites W2063756720 @default.
- W2019355665 cites W2070905404 @default.
- W2019355665 cites W2073065490 @default.
- W2019355665 cites W2074770406 @default.
- W2019355665 cites W2076971624 @default.
- W2019355665 cites W2079944027 @default.
- W2019355665 cites W2081246801 @default.
- W2019355665 cites W2100617358 @default.
- W2019355665 cites W2101927907 @default.
- W2019355665 cites W2108104850 @default.
- W2019355665 cites W2114419783 @default.
- W2019355665 cites W2130426385 @default.
- W2019355665 cites W2133735282 @default.
- W2019355665 cites W2136382947 @default.
- W2019355665 cites W2137983211 @default.
- W2019355665 cites W2166754846 @default.
- W2019355665 cites W2240613976 @default.
- W2019355665 cites W2311096170 @default.
- W2019355665 cites W3017323153 @default.
- W2019355665 cites W3018770027 @default.
- W2019355665 cites W3088222004 @default.
- W2019355665 cites W4230523122 @default.
- W2019355665 cites W854231880 @default.
- W2019355665 doi "https://doi.org/10.1016/j.advengsoft.2009.10.002" @default.
- W2019355665 hasPublicationYear "2010" @default.
- W2019355665 type Work @default.
- W2019355665 sameAs 2019355665 @default.
- W2019355665 citedByCount "44" @default.
- W2019355665 countsByYear W20193556652012 @default.
- W2019355665 countsByYear W20193556652013 @default.
- W2019355665 countsByYear W20193556652014 @default.
- W2019355665 countsByYear W20193556652015 @default.
- W2019355665 countsByYear W20193556652016 @default.
- W2019355665 countsByYear W20193556652017 @default.
- W2019355665 countsByYear W20193556652018 @default.
- W2019355665 countsByYear W20193556652019 @default.
- W2019355665 countsByYear W20193556652020 @default.
- W2019355665 countsByYear W20193556652021 @default.
- W2019355665 countsByYear W20193556652022 @default.
- W2019355665 countsByYear W20193556652023 @default.
- W2019355665 crossrefType "journal-article" @default.
- W2019355665 hasAuthorship W2019355665A5005214333 @default.
- W2019355665 hasAuthorship W2019355665A5019536505 @default.
- W2019355665 hasAuthorship W2019355665A5020961960 @default.
- W2019355665 hasAuthorship W2019355665A5032186191 @default.
- W2019355665 hasConcept C11413529 @default.
- W2019355665 hasConcept C119599485 @default.
- W2019355665 hasConcept C126255220 @default.
- W2019355665 hasConcept C127162648 @default.
- W2019355665 hasConcept C127413603 @default.
- W2019355665 hasConcept C154945302 @default.
- W2019355665 hasConcept C155681218 @default.
- W2019355665 hasConcept C184720557 @default.
- W2019355665 hasConcept C205649164 @default.
- W2019355665 hasConcept C33923547 @default.
- W2019355665 hasConcept C41008148 @default.
- W2019355665 hasConcept C50644808 @default.
- W2019355665 hasConcept C58640448 @default.
- W2019355665 hasConceptScore W2019355665C11413529 @default.
- W2019355665 hasConceptScore W2019355665C119599485 @default.
- W2019355665 hasConceptScore W2019355665C126255220 @default.
- W2019355665 hasConceptScore W2019355665C127162648 @default.
- W2019355665 hasConceptScore W2019355665C127413603 @default.
- W2019355665 hasConceptScore W2019355665C154945302 @default.
- W2019355665 hasConceptScore W2019355665C155681218 @default.
- W2019355665 hasConceptScore W2019355665C184720557 @default.
- W2019355665 hasConceptScore W2019355665C205649164 @default.