Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019359541> ?p ?o ?g. }
- W2019359541 abstract "We present a novel nonperturbative approach for calculating the form factors of the quark-gluon vertex, in a general covariant gauge. The key ingredient of this method is the exact all-order relation connecting the conventional quark-gluon vertex with the corresponding vertex of the background field method, which is Abelian-like. When this latter relation is combined with the standard gauge technique, supplemented by a crucial set of transverse Ward identities, it allows the approximate determination of the nonperturbative behavior of all twelve form factors comprising the quark-gluon vertex, for arbitrary values of the momenta. The actual implementation of this procedure is carried out in the Landau gauge, in order to make contact with the results of lattice simulations performed in this particular gauge. The most demanding technical aspect involves the calculation of certain (fully-dressed) auxiliary three-point functions, using lattice data as input for the gluon propagators appearing in their diagrammatic expansion. The numerical evaluation of the relevant form factors in three special kinematical configurations (soft gluon and quark symmetric limit, zero quark momentum) is carried out in detail, finding rather good agreement with the available lattice data. Most notably, a concrete mechanism is proposed for explaining the puzzling divergence of one of these form factors observed in lattice simulations." @default.
- W2019359541 created "2016-06-24" @default.
- W2019359541 creator A5006360949 @default.
- W2019359541 creator A5063083647 @default.
- W2019359541 creator A5080063676 @default.
- W2019359541 creator A5086778344 @default.
- W2019359541 date "2014-09-23" @default.
- W2019359541 modified "2023-10-18" @default.
- W2019359541 title "New method for determining the quark-gluon vertex" @default.
- W2019359541 cites W1497285868 @default.
- W2019359541 cites W1516370762 @default.
- W2019359541 cites W1965387212 @default.
- W2019359541 cites W1965443786 @default.
- W2019359541 cites W1969627479 @default.
- W2019359541 cites W1973709079 @default.
- W2019359541 cites W1974299409 @default.
- W2019359541 cites W1991622856 @default.
- W2019359541 cites W1994495544 @default.
- W2019359541 cites W1995731268 @default.
- W2019359541 cites W1999075693 @default.
- W2019359541 cites W1999956492 @default.
- W2019359541 cites W2003136956 @default.
- W2019359541 cites W2005152568 @default.
- W2019359541 cites W2007796121 @default.
- W2019359541 cites W2010164414 @default.
- W2019359541 cites W2012370228 @default.
- W2019359541 cites W2012728593 @default.
- W2019359541 cites W2025993179 @default.
- W2019359541 cites W2026362725 @default.
- W2019359541 cites W2033034824 @default.
- W2019359541 cites W2033494898 @default.
- W2019359541 cites W2036054578 @default.
- W2019359541 cites W2041885616 @default.
- W2019359541 cites W2042193565 @default.
- W2019359541 cites W2042356610 @default.
- W2019359541 cites W2043297007 @default.
- W2019359541 cites W2047702795 @default.
- W2019359541 cites W2049372404 @default.
- W2019359541 cites W2051392408 @default.
- W2019359541 cites W2051789635 @default.
- W2019359541 cites W2052142219 @default.
- W2019359541 cites W2057364460 @default.
- W2019359541 cites W2058548983 @default.
- W2019359541 cites W2063753649 @default.
- W2019359541 cites W2067751738 @default.
- W2019359541 cites W2070481303 @default.
- W2019359541 cites W2075093509 @default.
- W2019359541 cites W2076345023 @default.
- W2019359541 cites W2080500755 @default.
- W2019359541 cites W2081887805 @default.
- W2019359541 cites W2085771988 @default.
- W2019359541 cites W2088676751 @default.
- W2019359541 cites W2088792476 @default.
- W2019359541 cites W2089503642 @default.
- W2019359541 cites W2106653566 @default.
- W2019359541 cites W2121580548 @default.
- W2019359541 cites W2128276005 @default.
- W2019359541 cites W2138845714 @default.
- W2019359541 cites W2139279950 @default.
- W2019359541 cites W2157398164 @default.
- W2019359541 cites W2162431392 @default.
- W2019359541 cites W2212211680 @default.
- W2019359541 cites W2229741767 @default.
- W2019359541 cites W2763201681 @default.
- W2019359541 cites W2949787556 @default.
- W2019359541 cites W2950243838 @default.
- W2019359541 cites W3098770062 @default.
- W2019359541 cites W3098930556 @default.
- W2019359541 cites W3099620171 @default.
- W2019359541 cites W3100019492 @default.
- W2019359541 cites W3102704820 @default.
- W2019359541 cites W3103043783 @default.
- W2019359541 cites W3105049322 @default.
- W2019359541 cites W3105126517 @default.
- W2019359541 cites W3105335904 @default.
- W2019359541 cites W4248057474 @default.
- W2019359541 doi "https://doi.org/10.1103/physrevd.90.065027" @default.
- W2019359541 hasPublicationYear "2014" @default.
- W2019359541 type Work @default.
- W2019359541 sameAs 2019359541 @default.
- W2019359541 citedByCount "65" @default.
- W2019359541 countsByYear W20193595412014 @default.
- W2019359541 countsByYear W20193595412015 @default.
- W2019359541 countsByYear W20193595412016 @default.
- W2019359541 countsByYear W20193595412017 @default.
- W2019359541 countsByYear W20193595412018 @default.
- W2019359541 countsByYear W20193595412019 @default.
- W2019359541 countsByYear W20193595412020 @default.
- W2019359541 countsByYear W20193595412021 @default.
- W2019359541 countsByYear W20193595412023 @default.
- W2019359541 crossrefType "journal-article" @default.
- W2019359541 hasAuthorship W2019359541A5006360949 @default.
- W2019359541 hasAuthorship W2019359541A5063083647 @default.
- W2019359541 hasAuthorship W2019359541A5080063676 @default.
- W2019359541 hasAuthorship W2019359541A5086778344 @default.
- W2019359541 hasBestOaLocation W20193595412 @default.
- W2019359541 hasConcept C104416048 @default.
- W2019359541 hasConcept C106227882 @default.
- W2019359541 hasConcept C109214941 @default.
- W2019359541 hasConcept C118615104 @default.