Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019360853> ?p ?o ?g. }
- W2019360853 endingPage "837" @default.
- W2019360853 startingPage "824" @default.
- W2019360853 abstract "We present PoseShop—a pipeline to construct segmented human image database with minimal manual intervention. By downloading, analyzing, and filtering massive amounts of human images from the Internet, we achieve a database which contains 400 thousands human figures that are segmented out of their background. The human figures are organized based on action semantic, clothes attributes, and indexed by the shape of their poses. They can be queried using either silhouette sketch or a skeleton to find a given pose. We demonstrate applications for this database for multiframe personalized content synthesis in the form of comic-strips, where the main character is the user or his/her friends. We address the two challenges of such synthesis, namely personalization and consistency over a set of frames, by introducing head swapping and clothes swapping techniques. We also demonstrate an action correlation analysis application to show the usefulness of the database for vision application." @default.
- W2019360853 created "2016-06-24" @default.
- W2019360853 creator A5022467818 @default.
- W2019360853 creator A5024818901 @default.
- W2019360853 creator A5027446640 @default.
- W2019360853 creator A5037131575 @default.
- W2019360853 creator A5037233582 @default.
- W2019360853 creator A5084953118 @default.
- W2019360853 date "2013-05-01" @default.
- W2019360853 modified "2023-10-16" @default.
- W2019360853 title "PoseShop: Human Image Database Construction and Personalized Content Synthesis" @default.
- W2019360853 cites W1973958003 @default.
- W2019360853 cites W1999478155 @default.
- W2019360853 cites W2026019603 @default.
- W2019360853 cites W2031489346 @default.
- W2019360853 cites W2035773017 @default.
- W2019360853 cites W2052086995 @default.
- W2019360853 cites W2057175746 @default.
- W2019360853 cites W2066803216 @default.
- W2019360853 cites W2070309867 @default.
- W2019360853 cites W2075834168 @default.
- W2019360853 cites W2076837173 @default.
- W2019360853 cites W2083192529 @default.
- W2019360853 cites W2110764733 @default.
- W2019360853 cites W2118621948 @default.
- W2019360853 cites W2119381621 @default.
- W2019360853 cites W2120419212 @default.
- W2019360853 cites W2120601899 @default.
- W2019360853 cites W2123533187 @default.
- W2019360853 cites W2123921160 @default.
- W2019360853 cites W2124351162 @default.
- W2019360853 cites W2125310690 @default.
- W2019360853 cites W2129112648 @default.
- W2019360853 cites W2138632986 @default.
- W2019360853 cites W2138948290 @default.
- W2019360853 cites W2139479830 @default.
- W2019360853 cites W2140800654 @default.
- W2019360853 cites W2148948295 @default.
- W2019360853 cites W2149216307 @default.
- W2019360853 cites W2149489787 @default.
- W2019360853 cites W2153746365 @default.
- W2019360853 cites W2161969291 @default.
- W2019360853 cites W2165232124 @default.
- W2019360853 cites W2165281799 @default.
- W2019360853 cites W2294819727 @default.
- W2019360853 cites W2295844561 @default.
- W2019360853 cites W2544806203 @default.
- W2019360853 cites W2998377088 @default.
- W2019360853 cites W3136903822 @default.
- W2019360853 cites W3137381876 @default.
- W2019360853 cites W4229844323 @default.
- W2019360853 cites W4234358918 @default.
- W2019360853 cites W4240726888 @default.
- W2019360853 cites W4247941455 @default.
- W2019360853 cites W4376522650 @default.
- W2019360853 doi "https://doi.org/10.1109/tvcg.2012.148" @default.
- W2019360853 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22732681" @default.
- W2019360853 hasPublicationYear "2013" @default.
- W2019360853 type Work @default.
- W2019360853 sameAs 2019360853 @default.
- W2019360853 citedByCount "58" @default.
- W2019360853 countsByYear W20193608532012 @default.
- W2019360853 countsByYear W20193608532013 @default.
- W2019360853 countsByYear W20193608532014 @default.
- W2019360853 countsByYear W20193608532015 @default.
- W2019360853 countsByYear W20193608532016 @default.
- W2019360853 countsByYear W20193608532017 @default.
- W2019360853 countsByYear W20193608532018 @default.
- W2019360853 countsByYear W20193608532019 @default.
- W2019360853 countsByYear W20193608532020 @default.
- W2019360853 countsByYear W20193608532021 @default.
- W2019360853 countsByYear W20193608532022 @default.
- W2019360853 countsByYear W20193608532023 @default.
- W2019360853 crossrefType "journal-article" @default.
- W2019360853 hasAuthorship W2019360853A5022467818 @default.
- W2019360853 hasAuthorship W2019360853A5024818901 @default.
- W2019360853 hasAuthorship W2019360853A5027446640 @default.
- W2019360853 hasAuthorship W2019360853A5037131575 @default.
- W2019360853 hasAuthorship W2019360853A5037233582 @default.
- W2019360853 hasAuthorship W2019360853A5084953118 @default.
- W2019360853 hasConcept C110875604 @default.
- W2019360853 hasConcept C136764020 @default.
- W2019360853 hasConcept C154945302 @default.
- W2019360853 hasConcept C177264268 @default.
- W2019360853 hasConcept C199360897 @default.
- W2019360853 hasConcept C23123220 @default.
- W2019360853 hasConcept C31972630 @default.
- W2019360853 hasConcept C41008148 @default.
- W2019360853 hasConcept C43521106 @default.
- W2019360853 hasConcept C58103923 @default.
- W2019360853 hasConcept C71901391 @default.
- W2019360853 hasConcept C77088390 @default.
- W2019360853 hasConceptScore W2019360853C110875604 @default.
- W2019360853 hasConceptScore W2019360853C136764020 @default.
- W2019360853 hasConceptScore W2019360853C154945302 @default.
- W2019360853 hasConceptScore W2019360853C177264268 @default.
- W2019360853 hasConceptScore W2019360853C199360897 @default.
- W2019360853 hasConceptScore W2019360853C23123220 @default.