Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019362387> ?p ?o ?g. }
- W2019362387 endingPage "2627" @default.
- W2019362387 startingPage "2615" @default.
- W2019362387 abstract "Human adipose-derived stem cells (hASC) have shown great potential for bone tissue engineering. However, the molecular mechanisms underlying this potential are not yet known, in particular the separate and combined effects of three-dimensional (3D) culture and mechanical loading on hASC osteogenesis. Mechanical stimuli play a pivotal role in bone formation, remodeling, and fracture repair. To further understand hASC osteogenic differentiation and response to mechanical stimuli, gene expression profiles of proliferating or osteogenically induced hASC in 3D collagen I culture in the presence and absence of 10% uniaxial cyclic tensile strain were examined using microarray analysis. About 847 genes and 95 canonical pathways were affected during osteogenesis of hASC in 3D culture. Pathway analysis indicated the potential roles of Wnt/β-catenin signaling, bone morphogenic protein (BMP) signaling, platelet-derived growth factor (PDGF) signaling, and insulin-like growth factor 1 (IGF-1) signaling in hASC during osteogenic differentiation. Application of 10% uniaxial cyclic tensile strain suggested synergistic effects of strain with osteogenic differentiation media on hASC osteogenesis as indicated by significantly increased calcium accretion of hASC. There was no significant further alteration in the four major pathways (Wnt/β-catenin, BMP, PDGF, and IGF-1). However, 184 transcripts were affected by 10% cyclic tensile strain. Function and network analysis of these transcripts suggested that 10% cyclic tensile strain may play a role during hASC osteogenic differentiation by upregulating two crucial factors in bone regeneration: (1) proinflammatory cytokine regulators interleukin 1 receptor antagonist and suppressor of cytokine signaling 3; (2) known angiogenic inductors fibroblast growth factor 2, matrix metalloproteinase 2, and vascular endothelial growth factor A. This is the first study to investigate the effects of both 3D culture and mechanical load on hASC osteogenic differentiation. A complete microarray analysis investigating both the separate effect of soluble osteogenic inductive factors and the combined effects of chemical and mechanical stimulation was performed on hASC undergoing osteogenic differentiation. We have identified specific genes and pathways associated with mechanical response and osteogenic potential of hASC, thus providing significant information toward improved understanding of our use of hASC for functional bone tissue engineering applications." @default.
- W2019362387 created "2016-06-24" @default.
- W2019362387 creator A5044261921 @default.
- W2019362387 creator A5051260052 @default.
- W2019362387 creator A5066108800 @default.
- W2019362387 creator A5069136172 @default.
- W2019362387 creator A5077214680 @default.
- W2019362387 creator A5086375915 @default.
- W2019362387 date "2011-11-01" @default.
- W2019362387 modified "2023-10-15" @default.
- W2019362387 title "Microarray Analysis of Human Adipose-Derived Stem Cells in Three-Dimensional Collagen Culture: Osteogenesis Inhibits Bone Morphogenic Protein and Wnt Signaling Pathways, and Cyclic Tensile Strain Causes Upregulation of Proinflammatory Cytokine Regulators and Angiogenic Factors" @default.
- W2019362387 cites W1973768153 @default.
- W2019362387 cites W1974509430 @default.
- W2019362387 cites W1981478725 @default.
- W2019362387 cites W1984424368 @default.
- W2019362387 cites W1994737927 @default.
- W2019362387 cites W1998626286 @default.
- W2019362387 cites W2005528887 @default.
- W2019362387 cites W2007689991 @default.
- W2019362387 cites W2013443778 @default.
- W2019362387 cites W2016313989 @default.
- W2019362387 cites W2019150054 @default.
- W2019362387 cites W2028506801 @default.
- W2019362387 cites W2034502549 @default.
- W2019362387 cites W2036348189 @default.
- W2019362387 cites W2038926374 @default.
- W2019362387 cites W2042429663 @default.
- W2019362387 cites W2043227785 @default.
- W2019362387 cites W2047420544 @default.
- W2019362387 cites W2047654882 @default.
- W2019362387 cites W2050215340 @default.
- W2019362387 cites W2058512801 @default.
- W2019362387 cites W2065005994 @default.
- W2019362387 cites W2069900771 @default.
- W2019362387 cites W2077627758 @default.
- W2019362387 cites W2082575625 @default.
- W2019362387 cites W2083860653 @default.
- W2019362387 cites W2084145020 @default.
- W2019362387 cites W2084909069 @default.
- W2019362387 cites W2085625304 @default.
- W2019362387 cites W2087255769 @default.
- W2019362387 cites W2088991414 @default.
- W2019362387 cites W2091525953 @default.
- W2019362387 cites W2093306419 @default.
- W2019362387 cites W2096142466 @default.
- W2019362387 cites W2104601536 @default.
- W2019362387 cites W2107277218 @default.
- W2019362387 cites W2107503723 @default.
- W2019362387 cites W2112653342 @default.
- W2019362387 cites W2116477752 @default.
- W2019362387 cites W2117517020 @default.
- W2019362387 cites W2119664503 @default.
- W2019362387 cites W2126446849 @default.
- W2019362387 cites W2141310245 @default.
- W2019362387 cites W2146235933 @default.
- W2019362387 cites W2147495692 @default.
- W2019362387 cites W2149049293 @default.
- W2019362387 cites W2150326333 @default.
- W2019362387 cites W2153263291 @default.
- W2019362387 cites W2155507705 @default.
- W2019362387 cites W2164440257 @default.
- W2019362387 cites W2165209993 @default.
- W2019362387 cites W2167785598 @default.
- W2019362387 cites W4249736061 @default.
- W2019362387 cites W4385619632 @default.
- W2019362387 doi "https://doi.org/10.1089/ten.tea.2011.0107" @default.
- W2019362387 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3204199" @default.
- W2019362387 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21767168" @default.
- W2019362387 hasPublicationYear "2011" @default.
- W2019362387 type Work @default.
- W2019362387 sameAs 2019362387 @default.
- W2019362387 citedByCount "49" @default.
- W2019362387 countsByYear W20193623872012 @default.
- W2019362387 countsByYear W20193623872013 @default.
- W2019362387 countsByYear W20193623872014 @default.
- W2019362387 countsByYear W20193623872015 @default.
- W2019362387 countsByYear W20193623872016 @default.
- W2019362387 countsByYear W20193623872017 @default.
- W2019362387 countsByYear W20193623872018 @default.
- W2019362387 countsByYear W20193623872019 @default.
- W2019362387 countsByYear W20193623872020 @default.
- W2019362387 countsByYear W20193623872021 @default.
- W2019362387 countsByYear W20193623872022 @default.
- W2019362387 countsByYear W20193623872023 @default.
- W2019362387 crossrefType "journal-article" @default.
- W2019362387 hasAuthorship W2019362387A5044261921 @default.
- W2019362387 hasAuthorship W2019362387A5051260052 @default.
- W2019362387 hasAuthorship W2019362387A5066108800 @default.
- W2019362387 hasAuthorship W2019362387A5069136172 @default.
- W2019362387 hasAuthorship W2019362387A5077214680 @default.
- W2019362387 hasAuthorship W2019362387A5086375915 @default.
- W2019362387 hasBestOaLocation W20193623872 @default.
- W2019362387 hasConcept C137620995 @default.
- W2019362387 hasConcept C164027704 @default.
- W2019362387 hasConcept C185592680 @default.
- W2019362387 hasConcept C203014093 @default.
- W2019362387 hasConcept C2776914184 @default.
- W2019362387 hasConcept C62478195 @default.