Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019368295> ?p ?o ?g. }
- W2019368295 abstract "Processing of strings by some automata, when viewed on space-time (ST) diagrams, reveals characteristic soliton-like coherent periodic objects. They are inherently associated with iterations of automata mappings thus we call them the iterons. In the paper we present two classes of one-dimensional iterons: particles and filtrons. The particles are typical for parallel (cellular) processing, while filtrons, introduced in (32) are specific for serial processing of strings. In general, the images of iterated automata mappings exhibit not only coherent entities but also the fractals, and quasi-periodic and chaotic dynamics. We show typical images of such computations: fractals, multiplication by a number, and addition of binary numbers defined by a Turing machine. Then, the particles are presented as iterons generated by cellular automata in three computations: B/U code conversion (13, 29), majority classification (9), and in discrete version of the FPU (Fermi-Pasta-Ulam) dynamics (7, 23). We disclose particles by a technique of combinational recoding of ST diagrams (as opposed to sequential recoding). Subsequently, we recall the recursive filters based on FCA (filter cellular automata) window operators, and considered by Park (26), Ablowitz (1), Fokas (11), Fuchssteiner (12), Bruschi (5) and Jiang (20). We present the automata equivalents to these filters (33). Some of them belong to the class of filter automata introduced in (30). We also define and illustrate some properties of filtrons. Contrary to particles, the filtrons interact nonlocally in the sense that distant symbols may influence one another. Thus their interactions are very unusual. Some examples have been given in (32). Here we show new examples of filtron phenomena: multifiltron solitonic collisions, attracting and repelling filtrons, trapped bouncing filtrons (which behave like a resonance cavity) and quasi filtrons." @default.
- W2019368295 created "2016-06-24" @default.
- W2019368295 creator A5025139357 @default.
- W2019368295 date "1999-01-01" @default.
- W2019368295 modified "2023-09-26" @default.
- W2019368295 title "Iterons, fractals and computations of automata" @default.
- W2019368295 cites W1593727427 @default.
- W2019368295 cites W1964392547 @default.
- W2019368295 cites W1974584038 @default.
- W2019368295 cites W1986122930 @default.
- W2019368295 cites W1986404013 @default.
- W2019368295 cites W1998283738 @default.
- W2019368295 cites W2008205715 @default.
- W2019368295 cites W2027580140 @default.
- W2019368295 cites W2038559670 @default.
- W2019368295 cites W2039250507 @default.
- W2019368295 cites W2041977220 @default.
- W2019368295 cites W2043773215 @default.
- W2019368295 cites W2046994290 @default.
- W2019368295 cites W2051996949 @default.
- W2019368295 cites W2054855590 @default.
- W2019368295 cites W2058616419 @default.
- W2019368295 cites W2062042565 @default.
- W2019368295 cites W2062387741 @default.
- W2019368295 cites W2078346780 @default.
- W2019368295 cites W2108002652 @default.
- W2019368295 cites W2112243379 @default.
- W2019368295 cites W2116253371 @default.
- W2019368295 cites W2119159276 @default.
- W2019368295 cites W2460840023 @default.
- W2019368295 cites W2475476206 @default.
- W2019368295 cites W3124681370 @default.
- W2019368295 cites W3171123775 @default.
- W2019368295 cites W2523293526 @default.
- W2019368295 doi "https://doi.org/10.1063/1.58241" @default.
- W2019368295 hasPublicationYear "1999" @default.
- W2019368295 type Work @default.
- W2019368295 sameAs 2019368295 @default.
- W2019368295 citedByCount "6" @default.
- W2019368295 countsByYear W20193682952016 @default.
- W2019368295 crossrefType "proceedings-article" @default.
- W2019368295 hasAuthorship W2019368295A5025139357 @default.
- W2019368295 hasConcept C106131492 @default.
- W2019368295 hasConcept C112505250 @default.
- W2019368295 hasConcept C11413529 @default.
- W2019368295 hasConcept C116248031 @default.
- W2019368295 hasConcept C118615104 @default.
- W2019368295 hasConcept C134306372 @default.
- W2019368295 hasConcept C140479938 @default.
- W2019368295 hasConcept C154945302 @default.
- W2019368295 hasConcept C16101541 @default.
- W2019368295 hasConcept C174327141 @default.
- W2019368295 hasConcept C202444582 @default.
- W2019368295 hasConcept C2777052490 @default.
- W2019368295 hasConcept C31972630 @default.
- W2019368295 hasConcept C33923547 @default.
- W2019368295 hasConcept C35527583 @default.
- W2019368295 hasConcept C41008148 @default.
- W2019368295 hasConcept C45374587 @default.
- W2019368295 hasConcept C50348692 @default.
- W2019368295 hasConcept C75745568 @default.
- W2019368295 hasConcept C80444323 @default.
- W2019368295 hasConceptScore W2019368295C106131492 @default.
- W2019368295 hasConceptScore W2019368295C112505250 @default.
- W2019368295 hasConceptScore W2019368295C11413529 @default.
- W2019368295 hasConceptScore W2019368295C116248031 @default.
- W2019368295 hasConceptScore W2019368295C118615104 @default.
- W2019368295 hasConceptScore W2019368295C134306372 @default.
- W2019368295 hasConceptScore W2019368295C140479938 @default.
- W2019368295 hasConceptScore W2019368295C154945302 @default.
- W2019368295 hasConceptScore W2019368295C16101541 @default.
- W2019368295 hasConceptScore W2019368295C174327141 @default.
- W2019368295 hasConceptScore W2019368295C202444582 @default.
- W2019368295 hasConceptScore W2019368295C2777052490 @default.
- W2019368295 hasConceptScore W2019368295C31972630 @default.
- W2019368295 hasConceptScore W2019368295C33923547 @default.
- W2019368295 hasConceptScore W2019368295C35527583 @default.
- W2019368295 hasConceptScore W2019368295C41008148 @default.
- W2019368295 hasConceptScore W2019368295C45374587 @default.
- W2019368295 hasConceptScore W2019368295C50348692 @default.
- W2019368295 hasConceptScore W2019368295C75745568 @default.
- W2019368295 hasConceptScore W2019368295C80444323 @default.
- W2019368295 hasLocation W20193682951 @default.
- W2019368295 hasOpenAccess W2019368295 @default.
- W2019368295 hasPrimaryLocation W20193682951 @default.
- W2019368295 hasRelatedWork W136794209 @default.
- W2019368295 hasRelatedWork W145943585 @default.
- W2019368295 hasRelatedWork W1490505307 @default.
- W2019368295 hasRelatedWork W1964392547 @default.
- W2019368295 hasRelatedWork W1986122930 @default.
- W2019368295 hasRelatedWork W1994008195 @default.
- W2019368295 hasRelatedWork W2008205715 @default.
- W2019368295 hasRelatedWork W2026196933 @default.
- W2019368295 hasRelatedWork W2030877617 @default.
- W2019368295 hasRelatedWork W2039250507 @default.
- W2019368295 hasRelatedWork W2046994290 @default.
- W2019368295 hasRelatedWork W2051996949 @default.
- W2019368295 hasRelatedWork W2066862307 @default.
- W2019368295 hasRelatedWork W2114069230 @default.
- W2019368295 hasRelatedWork W2152109232 @default.