Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019389302> ?p ?o ?g. }
- W2019389302 endingPage "234" @default.
- W2019389302 startingPage "215" @default.
- W2019389302 abstract "A unified framework for surrogate model training point selection and error estimation is proposed. Building auxiliary local surrogate models over subdomains of the global surrogate model forms the basis of the proposed framework. A discrepancy function, defined as the absolute difference between response predictions from local and global surrogate models for randomly chosen test candidates, drives the framework, thereby not requiring any additional exact function evaluations. The benefits of this new approach are demonstrated with analytical test functions and the construction of a two-dimensional aerodynamic database. The results show that the proposed training point selection approach improves the convergence monotonicity and produces more accurate surrogate models compared to random and quasi-random training point selection strategies. The introduced root-mean-square discrepancy and maximum absolute discrepancy exhibit close agreement with the actual root-mean-square error and maximum absolute error, r..." @default.
- W2019389302 created "2016-06-24" @default.
- W2019389302 creator A5054806727 @default.
- W2019389302 creator A5087704644 @default.
- W2019389302 date "2015-01-01" @default.
- W2019389302 modified "2023-09-26" @default.
- W2019389302 title "Unified Framework for Training Point Selection and Error Estimation for Surrogate Models" @default.
- W2019389302 cites W1510052597 @default.
- W2019389302 cites W1538934584 @default.
- W2019389302 cites W1950691413 @default.
- W2019389302 cites W1981039871 @default.
- W2019389302 cites W1984753492 @default.
- W2019389302 cites W1991147432 @default.
- W2019389302 cites W1991239591 @default.
- W2019389302 cites W1994318724 @default.
- W2019389302 cites W1996804224 @default.
- W2019389302 cites W2002741856 @default.
- W2019389302 cites W2003657827 @default.
- W2019389302 cites W2008055107 @default.
- W2019389302 cites W2014213134 @default.
- W2019389302 cites W2018044188 @default.
- W2019389302 cites W2022926142 @default.
- W2019389302 cites W2040615655 @default.
- W2019389302 cites W2041942127 @default.
- W2019389302 cites W2041992845 @default.
- W2019389302 cites W2051203581 @default.
- W2019389302 cites W2062806575 @default.
- W2019389302 cites W2063434557 @default.
- W2019389302 cites W2073016592 @default.
- W2019389302 cites W2074605844 @default.
- W2019389302 cites W2074984119 @default.
- W2019389302 cites W2079100340 @default.
- W2019389302 cites W2094763293 @default.
- W2019389302 cites W2111758728 @default.
- W2019389302 cites W2114459240 @default.
- W2019389302 cites W2114863568 @default.
- W2019389302 cites W2116103153 @default.
- W2019389302 cites W2119142673 @default.
- W2019389302 cites W2125222534 @default.
- W2019389302 cites W2143591652 @default.
- W2019389302 cites W2156677085 @default.
- W2019389302 cites W2157394313 @default.
- W2019389302 cites W2163221713 @default.
- W2019389302 cites W2173502753 @default.
- W2019389302 cites W2213612645 @default.
- W2019389302 cites W2312837255 @default.
- W2019389302 cites W2313095136 @default.
- W2019389302 cites W2313924857 @default.
- W2019389302 cites W2317323139 @default.
- W2019389302 cites W2317688037 @default.
- W2019389302 cites W2327159199 @default.
- W2019389302 cites W2327622798 @default.
- W2019389302 cites W2330315439 @default.
- W2019389302 cites W2333955651 @default.
- W2019389302 cites W2478899349 @default.
- W2019389302 cites W2995586033 @default.
- W2019389302 cites W4238265432 @default.
- W2019389302 cites W4243645092 @default.
- W2019389302 cites W4251650715 @default.
- W2019389302 cites W4299551239 @default.
- W2019389302 cites W4300600608 @default.
- W2019389302 doi "https://doi.org/10.2514/1.j053064" @default.
- W2019389302 hasPublicationYear "2015" @default.
- W2019389302 type Work @default.
- W2019389302 sameAs 2019389302 @default.
- W2019389302 citedByCount "25" @default.
- W2019389302 countsByYear W20193893022016 @default.
- W2019389302 countsByYear W20193893022017 @default.
- W2019389302 countsByYear W20193893022018 @default.
- W2019389302 countsByYear W20193893022019 @default.
- W2019389302 countsByYear W20193893022020 @default.
- W2019389302 countsByYear W20193893022022 @default.
- W2019389302 countsByYear W20193893022023 @default.
- W2019389302 crossrefType "journal-article" @default.
- W2019389302 hasAuthorship W2019389302A5054806727 @default.
- W2019389302 hasAuthorship W2019389302A5087704644 @default.
- W2019389302 hasConcept C105795698 @default.
- W2019389302 hasConcept C119599485 @default.
- W2019389302 hasConcept C119857082 @default.
- W2019389302 hasConcept C121332964 @default.
- W2019389302 hasConcept C126255220 @default.
- W2019389302 hasConcept C127413603 @default.
- W2019389302 hasConcept C131675550 @default.
- W2019389302 hasConcept C134306372 @default.
- W2019389302 hasConcept C139945424 @default.
- W2019389302 hasConcept C14036430 @default.
- W2019389302 hasConcept C142806159 @default.
- W2019389302 hasConcept C158622935 @default.
- W2019389302 hasConcept C162324750 @default.
- W2019389302 hasConcept C2524010 @default.
- W2019389302 hasConcept C2777303404 @default.
- W2019389302 hasConcept C28719098 @default.
- W2019389302 hasConcept C28826006 @default.
- W2019389302 hasConcept C33923547 @default.
- W2019389302 hasConcept C41008148 @default.
- W2019389302 hasConcept C50522688 @default.
- W2019389302 hasConcept C62520636 @default.
- W2019389302 hasConcept C71907059 @default.