Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019401602> ?p ?o ?g. }
- W2019401602 endingPage "3646" @default.
- W2019401602 startingPage "3639" @default.
- W2019401602 abstract "As the capability of mass spectrometry-based proteomics has matured, tens of thousands of peptides can be measured simultaneously, which has the benefit of offering a systems view of protein expression. However, a major challenge is that with an increase in throughput, protein quantification estimation from the native measured peptides has become a computational task. A limitation to existing computationally-driven protein quantification methods is that most ignore protein variation, such as alternate splicing of the RNA transcript and post-translational modifications or other possible proteoforms, which will affect a significant fraction of the proteome. The consequence of this assumption is that statistical inference at the protein level, and consequently downstream analyses, such as network and pathway modeling, have only limited power for biomarker discovery. Here, we describe a Bayesian model (BP-Quant) that uses statistically derived peptides signatures to identify peptides that are outside the dominant pattern, or the existence of multiple over-expressed patterns to improve relative protein abundance estimates. It is a research-driven approach that utilizes the objectives of the experiment, defined in the context of a standard statistical hypothesis, to identify a set of peptides exhibiting similar statistical behavior relating to a protein. This approach infers that changes in relative protein abundance can be used as a surrogate for changes in function, without necessarily taking into account the effect of differential post-translational modifications, processing, or splicing in altering protein function. We verify the approach using a dilution study from mouse plasma samples and demonstrate that BP-Quant achieves similar accuracy as the current state-of-the-art methods at proteoform identification with significantly better specificity. BP-Quant is available as a MatLab ® and R packages at https://github.com/PNNL-Comp-Mass-Spec/BP-Quant." @default.
- W2019401602 created "2016-06-24" @default.
- W2019401602 creator A5013633090 @default.
- W2019401602 creator A5032341485 @default.
- W2019401602 creator A5032734658 @default.
- W2019401602 creator A5032834920 @default.
- W2019401602 creator A5034592694 @default.
- W2019401602 creator A5038563335 @default.
- W2019401602 creator A5040201243 @default.
- W2019401602 creator A5051464794 @default.
- W2019401602 creator A5053476989 @default.
- W2019401602 creator A5055753264 @default.
- W2019401602 creator A5069253580 @default.
- W2019401602 creator A5071240298 @default.
- W2019401602 creator A5077382678 @default.
- W2019401602 creator A5077478460 @default.
- W2019401602 creator A5081366092 @default.
- W2019401602 date "2014-12-01" @default.
- W2019401602 modified "2023-10-16" @default.
- W2019401602 title "Bayesian Proteoform Modeling Improves Protein Quantification of Global Proteomic Measurements" @default.
- W2019401602 cites W1568341953 @default.
- W2019401602 cites W1965993495 @default.
- W2019401602 cites W1969399346 @default.
- W2019401602 cites W1976286254 @default.
- W2019401602 cites W1990273811 @default.
- W2019401602 cites W1991856124 @default.
- W2019401602 cites W1995754608 @default.
- W2019401602 cites W2008730491 @default.
- W2019401602 cites W2008916791 @default.
- W2019401602 cites W2014186056 @default.
- W2019401602 cites W2017703089 @default.
- W2019401602 cites W2027136463 @default.
- W2019401602 cites W2033884357 @default.
- W2019401602 cites W2038169129 @default.
- W2019401602 cites W2043951056 @default.
- W2019401602 cites W2049874093 @default.
- W2019401602 cites W2050783490 @default.
- W2019401602 cites W2060037232 @default.
- W2019401602 cites W2061338144 @default.
- W2019401602 cites W2071331290 @default.
- W2019401602 cites W2072088274 @default.
- W2019401602 cites W2086894331 @default.
- W2019401602 cites W2100768052 @default.
- W2019401602 cites W2101938218 @default.
- W2019401602 cites W2107960986 @default.
- W2019401602 cites W2112569765 @default.
- W2019401602 cites W2124114991 @default.
- W2019401602 cites W2137941815 @default.
- W2019401602 cites W2147830145 @default.
- W2019401602 cites W2155553629 @default.
- W2019401602 cites W2155752483 @default.
- W2019401602 cites W2163946307 @default.
- W2019401602 cites W2468768283 @default.
- W2019401602 doi "https://doi.org/10.1074/mcp.m113.030932" @default.
- W2019401602 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4256511" @default.
- W2019401602 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25433089" @default.
- W2019401602 hasPublicationYear "2014" @default.
- W2019401602 type Work @default.
- W2019401602 sameAs 2019401602 @default.
- W2019401602 citedByCount "38" @default.
- W2019401602 countsByYear W20194016022015 @default.
- W2019401602 countsByYear W20194016022016 @default.
- W2019401602 countsByYear W20194016022017 @default.
- W2019401602 countsByYear W20194016022018 @default.
- W2019401602 countsByYear W20194016022019 @default.
- W2019401602 countsByYear W20194016022020 @default.
- W2019401602 countsByYear W20194016022021 @default.
- W2019401602 countsByYear W20194016022022 @default.
- W2019401602 countsByYear W20194016022023 @default.
- W2019401602 crossrefType "journal-article" @default.
- W2019401602 hasAuthorship W2019401602A5013633090 @default.
- W2019401602 hasAuthorship W2019401602A5032341485 @default.
- W2019401602 hasAuthorship W2019401602A5032734658 @default.
- W2019401602 hasAuthorship W2019401602A5032834920 @default.
- W2019401602 hasAuthorship W2019401602A5034592694 @default.
- W2019401602 hasAuthorship W2019401602A5038563335 @default.
- W2019401602 hasAuthorship W2019401602A5040201243 @default.
- W2019401602 hasAuthorship W2019401602A5051464794 @default.
- W2019401602 hasAuthorship W2019401602A5053476989 @default.
- W2019401602 hasAuthorship W2019401602A5055753264 @default.
- W2019401602 hasAuthorship W2019401602A5069253580 @default.
- W2019401602 hasAuthorship W2019401602A5071240298 @default.
- W2019401602 hasAuthorship W2019401602A5077382678 @default.
- W2019401602 hasAuthorship W2019401602A5077478460 @default.
- W2019401602 hasAuthorship W2019401602A5081366092 @default.
- W2019401602 hasBestOaLocation W20194016021 @default.
- W2019401602 hasConcept C104317684 @default.
- W2019401602 hasConcept C104397665 @default.
- W2019401602 hasConcept C105580179 @default.
- W2019401602 hasConcept C105795698 @default.
- W2019401602 hasConcept C107673813 @default.
- W2019401602 hasConcept C14036430 @default.
- W2019401602 hasConcept C151730666 @default.
- W2019401602 hasConcept C154945302 @default.
- W2019401602 hasConcept C194583182 @default.
- W2019401602 hasConcept C2779343474 @default.
- W2019401602 hasConcept C33923547 @default.
- W2019401602 hasConcept C41008148 @default.