Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019414469> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2019414469 abstract "This paper addresses two pattern-recognition problems in the context of random sets. For the first, the random set law is known and the task is to estimate the observed pattern from a feature set calculated from the observation. For the second, the law is unknown and we wish to estimate the parameters of the law. Estimation is accomplished by an optimal linear system whose inputs are features based on morphological granulometries. In the first case these features are granulometric moments; in the second they are moments of the granulometric moments. For the latter, estimation is placed in a Bayesian context by assuming that there exists a prior distribution for the parameters determining the law. A disjoint random grain model is assumed and the optimal linear estimator is determined by using asymptotic expressions for the moments of the granulometric moments. In both cases, the linear approach serves as a practical alternative to previously proposed nonlinear methods. Granulometric pattern estimation has previously been accomplished by a nonlinear method using full distributional knowledge of the random variables determining the pattern and granulometric features. Granulometric estimation of the law of a random grain model has previously been accomplished by solving a system of nonlinear equations resulting from the granulometric asymptotic mixing theorem. Both methods are limited in application owing to the necessity of performing a nonlinear optimization. The new linear method avoids this. It makes estimation possible for more complex models." @default.
- W2019414469 created "2016-06-24" @default.
- W2019414469 creator A5004434800 @default.
- W2019414469 creator A5010097254 @default.
- W2019414469 date "2002-06-01" @default.
- W2019414469 modified "2023-09-24" @default.
- W2019414469 title "Optimal linear granulometric estimation for random sets" @default.
- W2019414469 cites W135331729 @default.
- W2019414469 cites W1495105207 @default.
- W2019414469 cites W1987059979 @default.
- W2019414469 cites W1994283693 @default.
- W2019414469 cites W2007179462 @default.
- W2019414469 cites W2011994370 @default.
- W2019414469 cites W2033900074 @default.
- W2019414469 cites W2050568040 @default.
- W2019414469 cites W2067881346 @default.
- W2019414469 cites W2069646996 @default.
- W2019414469 cites W2069790948 @default.
- W2019414469 cites W2076035429 @default.
- W2019414469 cites W2081104556 @default.
- W2019414469 cites W2121293774 @default.
- W2019414469 cites W2797204481 @default.
- W2019414469 doi "https://doi.org/10.1016/s0031-3203(01)00113-3" @default.
- W2019414469 hasPublicationYear "2002" @default.
- W2019414469 type Work @default.
- W2019414469 sameAs 2019414469 @default.
- W2019414469 citedByCount "2" @default.
- W2019414469 crossrefType "journal-article" @default.
- W2019414469 hasAuthorship W2019414469A5004434800 @default.
- W2019414469 hasAuthorship W2019414469A5010097254 @default.
- W2019414469 hasConcept C105795698 @default.
- W2019414469 hasConcept C11413529 @default.
- W2019414469 hasConcept C121332964 @default.
- W2019414469 hasConcept C122123141 @default.
- W2019414469 hasConcept C126255220 @default.
- W2019414469 hasConcept C134306372 @default.
- W2019414469 hasConcept C138777275 @default.
- W2019414469 hasConcept C138885662 @default.
- W2019414469 hasConcept C151730666 @default.
- W2019414469 hasConcept C158622935 @default.
- W2019414469 hasConcept C167928553 @default.
- W2019414469 hasConcept C185429906 @default.
- W2019414469 hasConcept C185767445 @default.
- W2019414469 hasConcept C2776401178 @default.
- W2019414469 hasConcept C2779343474 @default.
- W2019414469 hasConcept C28826006 @default.
- W2019414469 hasConcept C33923547 @default.
- W2019414469 hasConcept C41895202 @default.
- W2019414469 hasConcept C45340560 @default.
- W2019414469 hasConcept C62520636 @default.
- W2019414469 hasConcept C86803240 @default.
- W2019414469 hasConceptScore W2019414469C105795698 @default.
- W2019414469 hasConceptScore W2019414469C11413529 @default.
- W2019414469 hasConceptScore W2019414469C121332964 @default.
- W2019414469 hasConceptScore W2019414469C122123141 @default.
- W2019414469 hasConceptScore W2019414469C126255220 @default.
- W2019414469 hasConceptScore W2019414469C134306372 @default.
- W2019414469 hasConceptScore W2019414469C138777275 @default.
- W2019414469 hasConceptScore W2019414469C138885662 @default.
- W2019414469 hasConceptScore W2019414469C151730666 @default.
- W2019414469 hasConceptScore W2019414469C158622935 @default.
- W2019414469 hasConceptScore W2019414469C167928553 @default.
- W2019414469 hasConceptScore W2019414469C185429906 @default.
- W2019414469 hasConceptScore W2019414469C185767445 @default.
- W2019414469 hasConceptScore W2019414469C2776401178 @default.
- W2019414469 hasConceptScore W2019414469C2779343474 @default.
- W2019414469 hasConceptScore W2019414469C28826006 @default.
- W2019414469 hasConceptScore W2019414469C33923547 @default.
- W2019414469 hasConceptScore W2019414469C41895202 @default.
- W2019414469 hasConceptScore W2019414469C45340560 @default.
- W2019414469 hasConceptScore W2019414469C62520636 @default.
- W2019414469 hasConceptScore W2019414469C86803240 @default.
- W2019414469 hasLocation W20194144691 @default.
- W2019414469 hasOpenAccess W2019414469 @default.
- W2019414469 hasPrimaryLocation W20194144691 @default.
- W2019414469 hasRelatedWork W1800069846 @default.
- W2019414469 hasRelatedWork W1975745778 @default.
- W2019414469 hasRelatedWork W1979025201 @default.
- W2019414469 hasRelatedWork W1999325087 @default.
- W2019414469 hasRelatedWork W2011709839 @default.
- W2019414469 hasRelatedWork W2025934416 @default.
- W2019414469 hasRelatedWork W2033656704 @default.
- W2019414469 hasRelatedWork W2037252428 @default.
- W2019414469 hasRelatedWork W2059540953 @default.
- W2019414469 hasRelatedWork W2059779421 @default.
- W2019414469 hasRelatedWork W2069790948 @default.
- W2019414469 hasRelatedWork W2075947535 @default.
- W2019414469 hasRelatedWork W2075994109 @default.
- W2019414469 hasRelatedWork W2096574201 @default.
- W2019414469 hasRelatedWork W2099867508 @default.
- W2019414469 hasRelatedWork W2125668638 @default.
- W2019414469 hasRelatedWork W2166313621 @default.
- W2019414469 hasRelatedWork W3027150114 @default.
- W2019414469 hasRelatedWork W3129129969 @default.
- W2019414469 hasRelatedWork W3096337415 @default.
- W2019414469 isParatext "false" @default.
- W2019414469 isRetracted "false" @default.
- W2019414469 magId "2019414469" @default.
- W2019414469 workType "article" @default.