Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019417083> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2019417083 endingPage "10" @default.
- W2019417083 startingPage "1" @default.
- W2019417083 abstract "We establish some stability results in 2-normed spaces for the radical quadratic functional equation <svg style=vertical-align:-6.99733pt;width:421.65875px; id=M1 height=31.143749 version=1.1 viewBox=0 0 421.65875 31.143749 width=421.65875 xmlns=http://www.w3.org/2000/svg> <g transform=matrix(1.25,0,0,-1.25,0,31.14375)> <text transform=matrix(1,0,0,-1,0.498,8.436)> <tspan style=font-size: 12.50px; x=0 y=0>𝑓</tspan> <tspan style=font-size: 12.50px; x=6.9392314 y=0>(</tspan> </text> <text transform=matrix(1,0,0,-1,11.601,4.187)> <tspan style=font-size: 12.50px; x=0 y=0></tspan> </text> <g transform=translate(24.817,23.179)> <path d=M 0,0 71.918,0 style=fill:none;stroke:#000000;stroke-width:0.82499999;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-opacity:1;stroke-dasharray:none/> </g> <text transform=matrix(1,0,0,-1,24.817,8.411)> <tspan style=font-size: 12.50px; x=0 y=0>∑</tspan> </text> <text transform=matrix(1,0,0,-1,36.245,13.507)> <tspan style=font-size: 8.75px; x=0 y=0>𝑛</tspan> </text> <text transform=matrix(1,0,0,-1,36.245,4.22)> <tspan style=font-size: 8.75px; x=0 y=0>𝑖</tspan> <tspan style=font-size: 8.75px; x=2.7219155 y=0>=</tspan> <tspan style=font-size: 8.75px; x=8.7171316 y=0>1</tspan> </text> <text transform=matrix(1,0,0,-1,49.85,8.436)> <tspan style=font-size: 12.50px; x=0 y=0>(</tspan> <tspan style=font-size: 12.50px; x=4.1635389 y=0>𝑥</tspan> </text> <text transform=matrix(1,0,0,-1,60.891,5.31)> <tspan style=font-size: 8.75px; x=0 y=0>𝑖</tspan> </text> <text transform=matrix(1,0,0,-1,66.904,8.436)> <tspan style=font-size: 12.50px; x=0 y=0>+</tspan> <tspan style=font-size: 12.50px; x=11.34033 y=0>𝑦</tspan> </text> <text transform=matrix(1,0,0,-1,84.448,5.31)> <tspan style=font-size: 8.75px; x=0 y=0>𝑖</tspan> </text> <text transform=matrix(1,0,0,-1,87.683,8.436)> <tspan style=font-size: 12.50px; x=0 y=0>)</tspan> </text> <text transform=matrix(1,0,0,-1,91.846,12.199)> <tspan style=font-size: 8.75px; x=0 y=0>2</tspan> </text> <text transform=matrix(1,0,0,-1,96.735,8.436)> <tspan style=font-size: 12.50px; x=0 y=0>)</tspan> <tspan style=font-size: 12.50px; x=6.9392314 y=0>+</tspan> <tspan style=font-size: 12.50px; x=18.279562 y=0>𝑓</tspan> <tspan style=font-size: 12.50px; x=25.218794 y=0>(</tspan> </text> <text transform=matrix(1,0,0,-1,126.123,4.187)> <tspan style=font-size: 12.50px; x=0 y=0></tspan> </text> <g transform=translate(139.339,23.179)> <path d=M 0,0 71.918,0 style=fill:none;stroke:#000000;stroke-width:0.82499999;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-opacity:1;stroke-dasharray:none/> </g> <text transform=matrix(1,0,0,-1,139.339,8.411)> <tspan style=font-size: 12.50px; x=0 y=0>∑</tspan> </text> <text transform=matrix(1,0,0,-1,150.767,13.507)> <tspan style=font-size: 8.75px; x=0 y=0>𝑛</tspan> </text> <text transform=matrix(1,0,0,-1,150.767,4.22)> <tspan style=font-size: 8.75px; x=0 y=0>𝑖</tspan> <tspan style=font-size: 8.75px; x=2.7219155 y=0>=</tspan> <tspan style=font-size: 8.75px; x=8.7171316 y=0>1</tspan> </text> <text transform=matrix(1,0,0,-1,164.372,8.436)> <tspan style=font-size: 12.50px; x=0 y=0>(</tspan> <tspan style=font-size: 12.50px; x=4.1635389 y=0>𝑥</tspan> </text> <text transform=matrix(1,0,0,-1,175.413,5.31)> <tspan style=font-size: 8.75px; x=0 y=0>𝑖</tspan> </text> <text transform=matrix(1,0,0,-1,181.426,8.436)> <tspan style=font-size: 12.50px; x=0 y=0>−</tspan> <tspan style=font-size: 12.50px; x=11.34033 y=0>𝑦</tspan> </text> <text transform=matrix(1,0,0,-1,198.97,5.31)> <tspan style=font-size: 8.75px; x=0 y=0>𝑖</tspan> </text> <text transform=matrix(1,0,0,-1,202.205,8.436)> <tspan style=font-size: 12.50px; x=0 y=0>)</tspan> </text> <text transform=matrix(1,0,0,-1,206.368,12.199)> <tspan style=font-size: 8.75px; x=0 y=0>2</tspan> </text> <text transform=matrix(1,0,0,-1,211.257,8.436)> <tspan style=font-size: 12.50px; x=0 y=0>)</tspan> <tspan style=font-size: 12.50px; x=7.6269031 y=0>=</tspan> <tspan style=font-size: 12.50px; x=19.667408 y=0>2</tspan> </text> <text transform=matrix(1,0,0,-1,239.267,8.411)> <tspan style=font-size: 12.50px; x=0 y=0>∑</tspan> </text> <text transform=matrix(1,0,0,-1,250.695,13.507)> <tspan style=font-size: 8.75px; x=0 y=0>𝑛</tspan> </text> <text transform=matrix(1,0,0,-1,250.695,4.22)> <tspan style=font-size: 8.75px; x=0 y=0>𝑖</tspan> <tspan style=font-size: 8.75px; x=2.7219155 y=0>=</tspan> <tspan style=font-size: 8.75px; x=8.7171316 y=0>1</tspan> </text> <text transform=matrix(1,0,0,-1,264.301,8.436)> <tspan style=font-size: 12.50px; x=0 y=0>(</tspan> <tspan style=font-size: 12.50px; x=4.1635389 y=0>𝑓</tspan> <tspan style=font-size: 12.50px; x=11.102771 y=0>(</tspan> <tspan style=font-size: 12.50px; x=15.26631 y=0>𝑥</tspan> </text> <text transform=matrix(1,0,0,-1,286.444,5.31)> <tspan style=font-size: 8.75px; x=0 y=0>𝑖</tspan> </text> <text transform=matrix(1,0,0,-1,289.678,8.436)> <tspan style=font-size: 12.50px; x=0 y=0>)</tspan> <tspan style=font-size: 12.50px; x=6.9392314 y=0>+</tspan> <tspan style=font-size: 12.50px; x=18.279562 y=0>𝑓</tspan> <tspan style=font-size: 12.50px; x=25.218794 y=0>(</tspan> <tspan style=font-size: 12.50px; x=29.382332 y=0>𝑦</tspan> </text> <text transform=matrix(1,0,0,-1,325.268,5.31)> <tspan style=font-size: 8.75px; x=0 y=0>𝑖</tspan> </text> <text transform=matrix(1,0,0,-1,328.502,8.436)> <tspan style=font-size: 12.50px; x=0 y=0>)</tspan> <tspan style=font-size: 12.50px; x=4.1635389 y=0>)</tspan> </text> </g> </svg> and then use subadditive functions to prove its stability in <svg style=vertical-align:-2.29482pt;width:8.8874998px; id=M2 height=10.9975 version=1.1 viewBox=0 0 8.8874998 10.9975 width=8.8874998 xmlns=http://www.w3.org/2000/svg> <g transform=matrix(1.25,0,0,-1.25,0,10.9975)> <text transform=matrix(1,0,0,-1,0.498,2.786)> <tspan style=font-size: 12.50px; x=0 y=0>𝑝</tspan> </text> </g> </svg>-2-normed spaces." @default.
- W2019417083 created "2016-06-24" @default.
- W2019417083 creator A5009961458 @default.
- W2019417083 creator A5011006248 @default.
- W2019417083 creator A5034769654 @default.
- W2019417083 creator A5067866161 @default.
- W2019417083 date "2012-01-01" @default.
- W2019417083 modified "2023-09-23" @default.
- W2019417083 title "Nearly Radical Quadratic Functional Equations in<i>p</i>-2-Normed Spaces" @default.
- W2019417083 cites W1965756228 @default.
- W2019417083 cites W1976101317 @default.
- W2019417083 cites W1987249397 @default.
- W2019417083 cites W1991124791 @default.
- W2019417083 cites W2000562350 @default.
- W2019417083 cites W2002523890 @default.
- W2019417083 cites W2003874621 @default.
- W2019417083 cites W2004945593 @default.
- W2019417083 cites W2008918161 @default.
- W2019417083 cites W2011422769 @default.
- W2019417083 cites W2012981171 @default.
- W2019417083 cites W2014910702 @default.
- W2019417083 cites W2016808667 @default.
- W2019417083 cites W2022512664 @default.
- W2019417083 cites W2022790025 @default.
- W2019417083 cites W2032960727 @default.
- W2019417083 cites W2041951818 @default.
- W2019417083 cites W2066112183 @default.
- W2019417083 cites W2066264125 @default.
- W2019417083 cites W2075328557 @default.
- W2019417083 cites W2117318518 @default.
- W2019417083 cites W2133227511 @default.
- W2019417083 cites W2149454046 @default.
- W2019417083 cites W2151334398 @default.
- W2019417083 cites W2165201807 @default.
- W2019417083 cites W4245388739 @default.
- W2019417083 cites W4253823417 @default.
- W2019417083 doi "https://doi.org/10.1155/2012/896032" @default.
- W2019417083 hasPublicationYear "2012" @default.
- W2019417083 type Work @default.
- W2019417083 sameAs 2019417083 @default.
- W2019417083 citedByCount "5" @default.
- W2019417083 countsByYear W20194170832018 @default.
- W2019417083 countsByYear W20194170832019 @default.
- W2019417083 countsByYear W20194170832021 @default.
- W2019417083 crossrefType "journal-article" @default.
- W2019417083 hasAuthorship W2019417083A5009961458 @default.
- W2019417083 hasAuthorship W2019417083A5011006248 @default.
- W2019417083 hasAuthorship W2019417083A5034769654 @default.
- W2019417083 hasAuthorship W2019417083A5067866161 @default.
- W2019417083 hasBestOaLocation W20194170831 @default.
- W2019417083 hasConcept C106487976 @default.
- W2019417083 hasConcept C114614502 @default.
- W2019417083 hasConcept C154945302 @default.
- W2019417083 hasConcept C159985019 @default.
- W2019417083 hasConcept C192562407 @default.
- W2019417083 hasConcept C2777737414 @default.
- W2019417083 hasConcept C33923547 @default.
- W2019417083 hasConcept C41008148 @default.
- W2019417083 hasConcept C94375191 @default.
- W2019417083 hasConceptScore W2019417083C106487976 @default.
- W2019417083 hasConceptScore W2019417083C114614502 @default.
- W2019417083 hasConceptScore W2019417083C154945302 @default.
- W2019417083 hasConceptScore W2019417083C159985019 @default.
- W2019417083 hasConceptScore W2019417083C192562407 @default.
- W2019417083 hasConceptScore W2019417083C2777737414 @default.
- W2019417083 hasConceptScore W2019417083C33923547 @default.
- W2019417083 hasConceptScore W2019417083C41008148 @default.
- W2019417083 hasConceptScore W2019417083C94375191 @default.
- W2019417083 hasLocation W20194170831 @default.
- W2019417083 hasLocation W20194170832 @default.
- W2019417083 hasOpenAccess W2019417083 @default.
- W2019417083 hasPrimaryLocation W20194170831 @default.
- W2019417083 hasRelatedWork W1978042415 @default.
- W2019417083 hasRelatedWork W2017331178 @default.
- W2019417083 hasRelatedWork W2047454787 @default.
- W2019417083 hasRelatedWork W2135173043 @default.
- W2019417083 hasRelatedWork W2345600497 @default.
- W2019417083 hasRelatedWork W241866648 @default.
- W2019417083 hasRelatedWork W2976797620 @default.
- W2019417083 hasRelatedWork W3086542228 @default.
- W2019417083 hasRelatedWork W3123593688 @default.
- W2019417083 hasRelatedWork W4253321761 @default.
- W2019417083 hasVolume "2012" @default.
- W2019417083 isParatext "false" @default.
- W2019417083 isRetracted "false" @default.
- W2019417083 magId "2019417083" @default.
- W2019417083 workType "article" @default.