Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019417463> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2019417463 endingPage "29" @default.
- W2019417463 startingPage "17" @default.
- W2019417463 abstract "The problem of estimating the relative position of an underwater maneuvering target is treated as an estimation problem when an unknown and time varying bias is present in the plant noise process. Pilot-initiated maneuvers are modeled as impulsive unknown inputs affecting the bias term at times unknown to the observer. A new algorithm, capable of efficiently handling the problem of state estimation with time varying unknown bias, is derived by using the Lainiotis multimodel partitioning theory coupled with conventional constant bias estimation algorithms. Simulation results show that the proposed algorithm performs very well under adverse operating conditions, such as high measurement noise, long target to observer range and large-scale target maneuvers. Das Problem, die relative Position eines Unterwasser manövrierenden Ziels zu bestimmen, wird als Schätzproblem behandelt, wobei ein unbekannter und zeitvarianter Bias im ‘plant-noise’-Prozeβ vorhanden ist. Durch Piloten eingeleitete Manöver werden als impulsartige und unbekannte Eingänge modelliert, die den Bias-Term zu Zeiten beeinflussen, die dem Beobachter unbekannt sind. Ein neuer Algorithmus, der in der Lage ist, das Problem der Zustandsschätzung mit zeitvariantem und unbekannten Bias effizient zu behandeln, wird durch Verwendung der Lainiotis Multimodell-Partitionierungstheorie gekoppelt mit konventionellen ‘constant-bias’-Schätzalgorithmen abgeleitet, Simulationsergebnisse zeigen, daβ der vorgeschlagene Algorithmus unter widrigen Betriebsbedingungen wie hohem Meβrauschen, groβem Abstand zwischen Ziel und Beobachter und umfangreichen Zielmanövern ein sehr gutes Verhalten afweist. Le problème de l'estimation de la position relative d'une cible sous-marine manoeuvrante est traité comme un probleme d'estimation lorsqu'un biais inconnu et variant dans le temps est présent dans le bruit de processus. Les manoeuvres de pilotage sont modelisées comme des entrées du système, inconnues et de nature impulsive, affectant le terme de biais à des instants inconnus de l'observateur. Un nouvel algorithme, capable de traiter efficacement le problème de l'estimation d'état avec un biais inconnu variant dans le temps, est dérivé en utilisant la théorie du partitionnement multimodèle de Lainiotis, couplée avec des algorithmes conventionnels d'estimation de biais constant. Les résultats des simulations montrent que l'algorithme proposé se comporte très bien en cas de mauvaises conditions d'utilisation, par exemple bruit de mesure élevé, cible grande par rapport à ce que peut voir l'observateur ou manoeuvres de grande amplitude de la cible." @default.
- W2019417463 created "2016-06-24" @default.
- W2019417463 creator A5022741687 @default.
- W2019417463 creator A5028626471 @default.
- W2019417463 creator A5066091541 @default.
- W2019417463 date "1995-01-01" @default.
- W2019417463 modified "2023-10-18" @default.
- W2019417463 title "Underwater tracking of a maneuvering target using time delay measurements" @default.
- W2019417463 cites W2015314335 @default.
- W2019417463 cites W2022869683 @default.
- W2019417463 cites W2032794879 @default.
- W2019417463 cites W2039921094 @default.
- W2019417463 cites W2042197718 @default.
- W2019417463 cites W2046227301 @default.
- W2019417463 cites W2056870323 @default.
- W2019417463 cites W2061754969 @default.
- W2019417463 cites W2077084893 @default.
- W2019417463 cites W2083885339 @default.
- W2019417463 cites W2103879485 @default.
- W2019417463 cites W2107634361 @default.
- W2019417463 cites W2114240282 @default.
- W2019417463 cites W2118705801 @default.
- W2019417463 cites W4253724606 @default.
- W2019417463 doi "https://doi.org/10.1016/0165-1684(94)00087-g" @default.
- W2019417463 hasPublicationYear "1995" @default.
- W2019417463 type Work @default.
- W2019417463 sameAs 2019417463 @default.
- W2019417463 citedByCount "13" @default.
- W2019417463 countsByYear W20194174632014 @default.
- W2019417463 countsByYear W20194174632015 @default.
- W2019417463 countsByYear W20194174632021 @default.
- W2019417463 countsByYear W20194174632022 @default.
- W2019417463 crossrefType "journal-article" @default.
- W2019417463 hasAuthorship W2019417463A5022741687 @default.
- W2019417463 hasAuthorship W2019417463A5028626471 @default.
- W2019417463 hasAuthorship W2019417463A5066091541 @default.
- W2019417463 hasConcept C10138342 @default.
- W2019417463 hasConcept C11413529 @default.
- W2019417463 hasConcept C115961682 @default.
- W2019417463 hasConcept C121332964 @default.
- W2019417463 hasConcept C154945302 @default.
- W2019417463 hasConcept C162324750 @default.
- W2019417463 hasConcept C198082294 @default.
- W2019417463 hasConcept C2775924081 @default.
- W2019417463 hasConcept C2780704645 @default.
- W2019417463 hasConcept C41008148 @default.
- W2019417463 hasConcept C47446073 @default.
- W2019417463 hasConcept C62520636 @default.
- W2019417463 hasConcept C99498987 @default.
- W2019417463 hasConceptScore W2019417463C10138342 @default.
- W2019417463 hasConceptScore W2019417463C11413529 @default.
- W2019417463 hasConceptScore W2019417463C115961682 @default.
- W2019417463 hasConceptScore W2019417463C121332964 @default.
- W2019417463 hasConceptScore W2019417463C154945302 @default.
- W2019417463 hasConceptScore W2019417463C162324750 @default.
- W2019417463 hasConceptScore W2019417463C198082294 @default.
- W2019417463 hasConceptScore W2019417463C2775924081 @default.
- W2019417463 hasConceptScore W2019417463C2780704645 @default.
- W2019417463 hasConceptScore W2019417463C41008148 @default.
- W2019417463 hasConceptScore W2019417463C47446073 @default.
- W2019417463 hasConceptScore W2019417463C62520636 @default.
- W2019417463 hasConceptScore W2019417463C99498987 @default.
- W2019417463 hasIssue "1" @default.
- W2019417463 hasLocation W20194174631 @default.
- W2019417463 hasOpenAccess W2019417463 @default.
- W2019417463 hasPrimaryLocation W20194174631 @default.
- W2019417463 hasRelatedWork W1486549961 @default.
- W2019417463 hasRelatedWork W1488593138 @default.
- W2019417463 hasRelatedWork W1591718657 @default.
- W2019417463 hasRelatedWork W2068066502 @default.
- W2019417463 hasRelatedWork W2106021496 @default.
- W2019417463 hasRelatedWork W2113484225 @default.
- W2019417463 hasRelatedWork W2133496718 @default.
- W2019417463 hasRelatedWork W2362281781 @default.
- W2019417463 hasRelatedWork W2392156621 @default.
- W2019417463 hasRelatedWork W2744028305 @default.
- W2019417463 hasVolume "41" @default.
- W2019417463 isParatext "false" @default.
- W2019417463 isRetracted "false" @default.
- W2019417463 magId "2019417463" @default.
- W2019417463 workType "article" @default.