Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019435463> ?p ?o ?g. }
- W2019435463 endingPage "1051" @default.
- W2019435463 startingPage "1032" @default.
- W2019435463 abstract "In this article, real-code population-based incremental learning (RPBIL) is extended for multi-objective optimization. The optimizer search performance is then improved by integrating a mutation operator of evolution strategies and an approximate gradient into its computational procedure. RPBIL and its variants, along with a number of established multi-objective evolutionary algorithms, are then implemented to solve four multi-objective design problems of trusses. The design problems are posted to minimize structural mass and compliance while fulfilling stress constraints. The comparative results based on a hypervolume indicator show that the proposed hybrid RPBIL is the best performer for the large-scale truss design problems." @default.
- W2019435463 created "2016-06-24" @default.
- W2019435463 creator A5014397651 @default.
- W2019435463 creator A5059825118 @default.
- W2019435463 date "2013-09-19" @default.
- W2019435463 modified "2023-10-16" @default.
- W2019435463 title "Hybrid real-code population-based incremental learning and approximate gradients for multi-objective truss design" @default.
- W2019435463 cites W120040691 @default.
- W2019435463 cites W1427193971 @default.
- W2019435463 cites W1494807122 @default.
- W2019435463 cites W1777561862 @default.
- W2019435463 cites W1912576130 @default.
- W2019435463 cites W1928511182 @default.
- W2019435463 cites W1966785207 @default.
- W2019435463 cites W1974411979 @default.
- W2019435463 cites W1974894667 @default.
- W2019435463 cites W1974915966 @default.
- W2019435463 cites W1989306251 @default.
- W2019435463 cites W2001839237 @default.
- W2019435463 cites W2006061810 @default.
- W2019435463 cites W2006694777 @default.
- W2019435463 cites W2008685010 @default.
- W2019435463 cites W2010440099 @default.
- W2019435463 cites W2015490212 @default.
- W2019435463 cites W2020807867 @default.
- W2019435463 cites W2028031385 @default.
- W2019435463 cites W2042916152 @default.
- W2019435463 cites W2049653466 @default.
- W2019435463 cites W2050927287 @default.
- W2019435463 cites W2051316667 @default.
- W2019435463 cites W2055631366 @default.
- W2019435463 cites W2059126931 @default.
- W2019435463 cites W2061785985 @default.
- W2019435463 cites W2077966657 @default.
- W2019435463 cites W2087065471 @default.
- W2019435463 cites W2092258872 @default.
- W2019435463 cites W2097746659 @default.
- W2019435463 cites W2104492856 @default.
- W2019435463 cites W2113915527 @default.
- W2019435463 cites W2117228208 @default.
- W2019435463 cites W2123165030 @default.
- W2019435463 cites W2126105956 @default.
- W2019435463 cites W2140623205 @default.
- W2019435463 cites W2143381319 @default.
- W2019435463 cites W2154756201 @default.
- W2019435463 cites W2164589765 @default.
- W2019435463 cites W2169305585 @default.
- W2019435463 cites W2053645783 @default.
- W2019435463 doi "https://doi.org/10.1080/0305215x.2013.823194" @default.
- W2019435463 hasPublicationYear "2013" @default.
- W2019435463 type Work @default.
- W2019435463 sameAs 2019435463 @default.
- W2019435463 citedByCount "12" @default.
- W2019435463 countsByYear W20194354632014 @default.
- W2019435463 countsByYear W20194354632017 @default.
- W2019435463 countsByYear W20194354632018 @default.
- W2019435463 countsByYear W20194354632019 @default.
- W2019435463 countsByYear W20194354632020 @default.
- W2019435463 countsByYear W20194354632021 @default.
- W2019435463 countsByYear W20194354632023 @default.
- W2019435463 crossrefType "journal-article" @default.
- W2019435463 hasAuthorship W2019435463A5014397651 @default.
- W2019435463 hasAuthorship W2019435463A5059825118 @default.
- W2019435463 hasConcept C104317684 @default.
- W2019435463 hasConcept C11413529 @default.
- W2019435463 hasConcept C126255220 @default.
- W2019435463 hasConcept C127413603 @default.
- W2019435463 hasConcept C144024400 @default.
- W2019435463 hasConcept C149923435 @default.
- W2019435463 hasConcept C158448853 @default.
- W2019435463 hasConcept C159149176 @default.
- W2019435463 hasConcept C17020691 @default.
- W2019435463 hasConcept C173534245 @default.
- W2019435463 hasConcept C177264268 @default.
- W2019435463 hasConcept C185592680 @default.
- W2019435463 hasConcept C199360897 @default.
- W2019435463 hasConcept C2776760102 @default.
- W2019435463 hasConcept C2908647359 @default.
- W2019435463 hasConcept C33923547 @default.
- W2019435463 hasConcept C41008148 @default.
- W2019435463 hasConcept C501734568 @default.
- W2019435463 hasConcept C55493867 @default.
- W2019435463 hasConcept C66938386 @default.
- W2019435463 hasConcept C86339819 @default.
- W2019435463 hasConceptScore W2019435463C104317684 @default.
- W2019435463 hasConceptScore W2019435463C11413529 @default.
- W2019435463 hasConceptScore W2019435463C126255220 @default.
- W2019435463 hasConceptScore W2019435463C127413603 @default.
- W2019435463 hasConceptScore W2019435463C144024400 @default.
- W2019435463 hasConceptScore W2019435463C149923435 @default.
- W2019435463 hasConceptScore W2019435463C158448853 @default.
- W2019435463 hasConceptScore W2019435463C159149176 @default.
- W2019435463 hasConceptScore W2019435463C17020691 @default.
- W2019435463 hasConceptScore W2019435463C173534245 @default.
- W2019435463 hasConceptScore W2019435463C177264268 @default.
- W2019435463 hasConceptScore W2019435463C185592680 @default.
- W2019435463 hasConceptScore W2019435463C199360897 @default.
- W2019435463 hasConceptScore W2019435463C2776760102 @default.