Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019437468> ?p ?o ?g. }
- W2019437468 endingPage "621" @default.
- W2019437468 startingPage "610" @default.
- W2019437468 abstract "Inspired by biological evolution, a plethora of algorithms with evolutionary features have been proposed. These algorithms have strengths in certain aspects, thus yielding better optimization performance in a particular problem. However, in a wide range of problems, none of them are superior to one another. Synergetic combination of these algorithms is one of the potential ways to ameliorate their search ability. Based on this idea, this paper proposes an adaptive memetic computing as the synergy of a genetic algorithm, differential evolution, and estimation of distribution algorithm. The ratio of the number of fitter solutions produced by the algorithms in a generation defines their adaptability features in the next generation. Subsequently, a subset of solutions undergoes local search using the evolutionary gradient search algorithm. This memetic technique is then implemented in two prominent frameworks of multiobjective optimization: the domination- and decomposition-based frameworks. The performance of the adaptive memetic algorithms is validated in a wide range of test problems with different characteristics and difficulties." @default.
- W2019437468 created "2016-06-24" @default.
- W2019437468 creator A5025285243 @default.
- W2019437468 creator A5087315970 @default.
- W2019437468 creator A5090108695 @default.
- W2019437468 date "2015-04-01" @default.
- W2019437468 modified "2023-09-26" @default.
- W2019437468 title "Adaptive Memetic Computing for Evolutionary Multiobjective Optimization" @default.
- W2019437468 cites W1574490530 @default.
- W2019437468 cites W1576888158 @default.
- W2019437468 cites W1918283942 @default.
- W2019437468 cites W1965119149 @default.
- W2019437468 cites W1968173975 @default.
- W2019437468 cites W1968219458 @default.
- W2019437468 cites W2000648597 @default.
- W2019437468 cites W2008316291 @default.
- W2019437468 cites W2008434012 @default.
- W2019437468 cites W2019918358 @default.
- W2019437468 cites W2020832542 @default.
- W2019437468 cites W2021418037 @default.
- W2019437468 cites W2042438268 @default.
- W2019437468 cites W2077418700 @default.
- W2019437468 cites W2101097701 @default.
- W2019437468 cites W2101473977 @default.
- W2019437468 cites W2102625537 @default.
- W2019437468 cites W2104274529 @default.
- W2019437468 cites W2104921316 @default.
- W2019437468 cites W2108968575 @default.
- W2019437468 cites W2109865546 @default.
- W2019437468 cites W2109881441 @default.
- W2019437468 cites W2110658979 @default.
- W2019437468 cites W2111811973 @default.
- W2019437468 cites W2114620686 @default.
- W2019437468 cites W2116064496 @default.
- W2019437468 cites W2118114365 @default.
- W2019437468 cites W2119308046 @default.
- W2019437468 cites W2120138297 @default.
- W2019437468 cites W2125899728 @default.
- W2019437468 cites W2126105956 @default.
- W2019437468 cites W2133787071 @default.
- W2019437468 cites W2140886193 @default.
- W2019437468 cites W2143185749 @default.
- W2019437468 cites W2143381319 @default.
- W2019437468 cites W2150046657 @default.
- W2019437468 cites W2152033532 @default.
- W2019437468 cites W2157938810 @default.
- W2019437468 cites W2167757882 @default.
- W2019437468 cites W2169982207 @default.
- W2019437468 cites W27366642 @default.
- W2019437468 cites W61339854 @default.
- W2019437468 cites W971341195 @default.
- W2019437468 doi "https://doi.org/10.1109/tcyb.2014.2331994" @default.
- W2019437468 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25014987" @default.
- W2019437468 hasPublicationYear "2015" @default.
- W2019437468 type Work @default.
- W2019437468 sameAs 2019437468 @default.
- W2019437468 citedByCount "60" @default.
- W2019437468 countsByYear W20194374682015 @default.
- W2019437468 countsByYear W20194374682016 @default.
- W2019437468 countsByYear W20194374682017 @default.
- W2019437468 countsByYear W20194374682018 @default.
- W2019437468 countsByYear W20194374682019 @default.
- W2019437468 countsByYear W20194374682020 @default.
- W2019437468 countsByYear W20194374682021 @default.
- W2019437468 countsByYear W20194374682022 @default.
- W2019437468 countsByYear W20194374682023 @default.
- W2019437468 crossrefType "journal-article" @default.
- W2019437468 hasAuthorship W2019437468A5025285243 @default.
- W2019437468 hasAuthorship W2019437468A5087315970 @default.
- W2019437468 hasAuthorship W2019437468A5090108695 @default.
- W2019437468 hasConcept C105902424 @default.
- W2019437468 hasConcept C119857082 @default.
- W2019437468 hasConcept C126255220 @default.
- W2019437468 hasConcept C127413603 @default.
- W2019437468 hasConcept C135320971 @default.
- W2019437468 hasConcept C137836250 @default.
- W2019437468 hasConcept C146978453 @default.
- W2019437468 hasConcept C154945302 @default.
- W2019437468 hasConcept C159149176 @default.
- W2019437468 hasConcept C177606310 @default.
- W2019437468 hasConcept C18903297 @default.
- W2019437468 hasConcept C204323151 @default.
- W2019437468 hasConcept C33923547 @default.
- W2019437468 hasConcept C35129592 @default.
- W2019437468 hasConcept C41008148 @default.
- W2019437468 hasConcept C51620047 @default.
- W2019437468 hasConcept C74750220 @default.
- W2019437468 hasConcept C86803240 @default.
- W2019437468 hasConcept C8880873 @default.
- W2019437468 hasConceptScore W2019437468C105902424 @default.
- W2019437468 hasConceptScore W2019437468C119857082 @default.
- W2019437468 hasConceptScore W2019437468C126255220 @default.
- W2019437468 hasConceptScore W2019437468C127413603 @default.
- W2019437468 hasConceptScore W2019437468C135320971 @default.
- W2019437468 hasConceptScore W2019437468C137836250 @default.
- W2019437468 hasConceptScore W2019437468C146978453 @default.
- W2019437468 hasConceptScore W2019437468C154945302 @default.
- W2019437468 hasConceptScore W2019437468C159149176 @default.