Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019438861> ?p ?o ?g. }
- W2019438861 endingPage "473" @default.
- W2019438861 startingPage "461" @default.
- W2019438861 abstract "Extended periods of inactivity cause severe bone loss and concomitant deterioration of the musculoskeletal system. Considerable research has been aimed at better understanding the mechanisms and consequences of bone loss due to unloading and the associated effects on strength and fracture risk. One factor that has not been studied extensively but is of great interest, particularly for human spaceflight, is how multiple or repeated exposures to unloading and reloading affect the skeleton. Space agencies worldwide anticipate increased usage of repeat-flier crewmembers, and major thrust of research has focused on better understanding of microgravity effects on loss of bone density at weightbearing skeletal sites; however there is limited data available on repeat microgravity exposure. The adult hindlimb unloaded (HU) rat model was used to determine how an initial unloading cycle will affect a subsequent exposure to disuse and recovery thereafter. Animals underwent 28 days of HU starting at 6 months of age followed by 56 days of recovery, and then another 28 days of HU with 56 days of recovery. In vivo longitudinal pQCT was used to quantify bone morphological changes, and ex vivo μCT was used to quantify trabecular microarchitecture and cortical shell geometry at the proximal tibia metaphysis (PTM). The mechanical properties of trabecular bone were examined by the reduced platen compression mechanical test. The hypothesis that the initial HU exposure will mitigate decrements in bone mass and density for the second HU exposure was supported as pre- to post-HU declines in total BMC, total vBMD, and cortical area by in vivo pQCT at the proximal tibia metaphysis were milder for the second HU (and not significant) compared to an age-matched single HU (3% vs. 6%, 2% vs. 6%, and 2% vs. 6%, respectively). In contrast, the hypothesis was not supported at the microarchitectural level as losses in BV/TV and Tb.Th. were similar during 2nd HU exposure and age-matched single HU. Recovery with respect to post-HU values and compared to aging controls for total BMC, vBMD and cortical area were slower in older animals exposed to single or double HU cycles compared to recovery of younger animals exposed to a single HU bout. Despite milder recovery at the older age, there was no difference between unloaded animals and controls at the end of second recovery period. Therefore, the data did not support the hypothesis that two cycles of HU exposure with recovery would have a net negative effect. Mechanical properties of trabecular bone were affected more severely than densitometric measures (35% loss in trabecular bone ultimate stress vs. 9% loss in trabecular vBMD), which can be attributed most prominently to reductions in trabecular bone density and tissue mineral density. Together, our data demonstrate that initial exposure to mechanical unloading does not exacerbate bone loss during a subsequent unloading period and two cycles of unloading followed by recovery do not have a cumulative net negative effect on total bone mineral content and density as measured by pQCT at the proximal tibia metaphysis." @default.
- W2019438861 created "2016-06-24" @default.
- W2019438861 creator A5012957590 @default.
- W2019438861 creator A5030083234 @default.
- W2019438861 creator A5046482339 @default.
- W2019438861 creator A5068138518 @default.
- W2019438861 creator A5089248217 @default.
- W2019438861 creator A5090010894 @default.
- W2019438861 date "2013-10-01" @default.
- W2019438861 modified "2023-09-24" @default.
- W2019438861 title "Previous exposure to simulated microgravity does not exacerbate bone loss during subsequent exposure in the proximal tibia of adult rats" @default.
- W2019438861 cites W1425165754 @default.
- W2019438861 cites W1524656751 @default.
- W2019438861 cites W1563308203 @default.
- W2019438861 cites W1599204041 @default.
- W2019438861 cites W1936547246 @default.
- W2019438861 cites W1977489392 @default.
- W2019438861 cites W1982931874 @default.
- W2019438861 cites W1983701349 @default.
- W2019438861 cites W1983993011 @default.
- W2019438861 cites W1992567157 @default.
- W2019438861 cites W1997364815 @default.
- W2019438861 cites W1997903603 @default.
- W2019438861 cites W2012514506 @default.
- W2019438861 cites W2022498894 @default.
- W2019438861 cites W2025378666 @default.
- W2019438861 cites W2034975399 @default.
- W2019438861 cites W2035932745 @default.
- W2019438861 cites W2036125852 @default.
- W2019438861 cites W2037156220 @default.
- W2019438861 cites W2043192944 @default.
- W2019438861 cites W2050518965 @default.
- W2019438861 cites W2050666211 @default.
- W2019438861 cites W2054707554 @default.
- W2019438861 cites W2055658787 @default.
- W2019438861 cites W2066749771 @default.
- W2019438861 cites W2072820122 @default.
- W2019438861 cites W2083991002 @default.
- W2019438861 cites W2085086344 @default.
- W2019438861 cites W2088737765 @default.
- W2019438861 cites W2089854308 @default.
- W2019438861 cites W2090241995 @default.
- W2019438861 cites W2093476254 @default.
- W2019438861 cites W2094779750 @default.
- W2019438861 cites W2101761592 @default.
- W2019438861 cites W2110802982 @default.
- W2019438861 cites W2112220860 @default.
- W2019438861 cites W2113697838 @default.
- W2019438861 cites W2117994161 @default.
- W2019438861 cites W2119818184 @default.
- W2019438861 cites W2120490103 @default.
- W2019438861 cites W2121823709 @default.
- W2019438861 cites W2122194433 @default.
- W2019438861 cites W2132260449 @default.
- W2019438861 cites W2137406166 @default.
- W2019438861 cites W2139267283 @default.
- W2019438861 cites W2141954707 @default.
- W2019438861 cites W2161555525 @default.
- W2019438861 cites W2162539094 @default.
- W2019438861 cites W2264374290 @default.
- W2019438861 cites W2043805472 @default.
- W2019438861 doi "https://doi.org/10.1016/j.bone.2013.07.004" @default.
- W2019438861 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23871849" @default.
- W2019438861 hasPublicationYear "2013" @default.
- W2019438861 type Work @default.
- W2019438861 sameAs 2019438861 @default.
- W2019438861 citedByCount "14" @default.
- W2019438861 countsByYear W20194388612014 @default.
- W2019438861 countsByYear W20194388612015 @default.
- W2019438861 countsByYear W20194388612017 @default.
- W2019438861 countsByYear W20194388612018 @default.
- W2019438861 countsByYear W20194388612019 @default.
- W2019438861 countsByYear W20194388612020 @default.
- W2019438861 countsByYear W20194388612021 @default.
- W2019438861 countsByYear W20194388612022 @default.
- W2019438861 countsByYear W20194388612023 @default.
- W2019438861 crossrefType "journal-article" @default.
- W2019438861 hasAuthorship W2019438861A5012957590 @default.
- W2019438861 hasAuthorship W2019438861A5030083234 @default.
- W2019438861 hasAuthorship W2019438861A5046482339 @default.
- W2019438861 hasAuthorship W2019438861A5068138518 @default.
- W2019438861 hasAuthorship W2019438861A5089248217 @default.
- W2019438861 hasAuthorship W2019438861A5090010894 @default.
- W2019438861 hasConcept C103888896 @default.
- W2019438861 hasConcept C105702510 @default.
- W2019438861 hasConcept C126322002 @default.
- W2019438861 hasConcept C127413603 @default.
- W2019438861 hasConcept C146978453 @default.
- W2019438861 hasConcept C150903083 @default.
- W2019438861 hasConcept C18969341 @default.
- W2019438861 hasConcept C207001950 @default.
- W2019438861 hasConcept C2776541429 @default.
- W2019438861 hasConcept C2777236700 @default.
- W2019438861 hasConcept C2777425516 @default.
- W2019438861 hasConcept C2778879140 @default.
- W2019438861 hasConcept C2779329777 @default.
- W2019438861 hasConcept C2781451080 @default.
- W2019438861 hasConcept C51738704 @default.