Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019438923> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2019438923 abstract "Data-intensive applications involving the analysis of large datasets often require large amounts of compute and storage resources, for which locality can be crucial to high throughput and performance. We propose a data approach that acquires compute and storage resources dynamically, replicates in response to demand, and schedules computations close to data. As demand increases, more resources are acquired, thus allowing faster response to subsequent requests that refer to the same data; when demand drops, resources are released. This approach can provide the benefits of dedicated hardware without the associated high costs, depending on workload and resource characteristics. To explore the feasibility of diffusion, we offer both a theoretical and an empirical analysis. We define an abstract model for diffusion, introduce new scheduling policies with heuristics to optimize real-world performance, and develop a competitive online cache eviction policy. We also offer many empirical experiments to explore the benefits of dynamically expanding and contracting resources based on load, to improve system responsiveness while keeping wasted resources small. We show performance improvements of one to two orders of magnitude across three diverse workloads when compared to the performance of parallel file systems with throughputs approaching 80 Gb/s on a modest cluster of 200 processors. We also compare diffusion with a best model for active storage, contrasting the difference between a pull-model found in diffusion and a push-model found in active storage." @default.
- W2019438923 created "2016-06-24" @default.
- W2019438923 creator A5007301255 @default.
- W2019438923 creator A5010993811 @default.
- W2019438923 creator A5030599558 @default.
- W2019438923 creator A5032231503 @default.
- W2019438923 creator A5049930476 @default.
- W2019438923 creator A5058976449 @default.
- W2019438923 creator A5064016443 @default.
- W2019438923 date "2009-06-11" @default.
- W2019438923 modified "2023-09-27" @default.
- W2019438923 title "The quest for scalable support of data-intensive workloads in distributed systems" @default.
- W2019438923 cites W155684218 @default.
- W2019438923 cites W1978690967 @default.
- W2019438923 cites W1987281948 @default.
- W2019438923 cites W2047034252 @default.
- W2019438923 cites W2051233655 @default.
- W2019438923 cites W2069583953 @default.
- W2019438923 cites W2104704206 @default.
- W2019438923 cites W2123130398 @default.
- W2019438923 cites W2146176543 @default.
- W2019438923 cites W4238584892 @default.
- W2019438923 doi "https://doi.org/10.1145/1551609.1551642" @default.
- W2019438923 hasPublicationYear "2009" @default.
- W2019438923 type Work @default.
- W2019438923 sameAs 2019438923 @default.
- W2019438923 citedByCount "50" @default.
- W2019438923 countsByYear W20194389232012 @default.
- W2019438923 countsByYear W20194389232013 @default.
- W2019438923 countsByYear W20194389232014 @default.
- W2019438923 countsByYear W20194389232015 @default.
- W2019438923 countsByYear W20194389232016 @default.
- W2019438923 countsByYear W20194389232017 @default.
- W2019438923 countsByYear W20194389232018 @default.
- W2019438923 countsByYear W20194389232019 @default.
- W2019438923 countsByYear W20194389232020 @default.
- W2019438923 crossrefType "proceedings-article" @default.
- W2019438923 hasAuthorship W2019438923A5007301255 @default.
- W2019438923 hasAuthorship W2019438923A5010993811 @default.
- W2019438923 hasAuthorship W2019438923A5030599558 @default.
- W2019438923 hasAuthorship W2019438923A5032231503 @default.
- W2019438923 hasAuthorship W2019438923A5049930476 @default.
- W2019438923 hasAuthorship W2019438923A5058976449 @default.
- W2019438923 hasAuthorship W2019438923A5064016443 @default.
- W2019438923 hasConcept C111919701 @default.
- W2019438923 hasConcept C120314980 @default.
- W2019438923 hasConcept C173608175 @default.
- W2019438923 hasConcept C41008148 @default.
- W2019438923 hasConcept C48044578 @default.
- W2019438923 hasConcept C70061542 @default.
- W2019438923 hasConceptScore W2019438923C111919701 @default.
- W2019438923 hasConceptScore W2019438923C120314980 @default.
- W2019438923 hasConceptScore W2019438923C173608175 @default.
- W2019438923 hasConceptScore W2019438923C41008148 @default.
- W2019438923 hasConceptScore W2019438923C48044578 @default.
- W2019438923 hasConceptScore W2019438923C70061542 @default.
- W2019438923 hasLocation W20194389231 @default.
- W2019438923 hasOpenAccess W2019438923 @default.
- W2019438923 hasPrimaryLocation W20194389231 @default.
- W2019438923 hasRelatedWork W1534871385 @default.
- W2019438923 hasRelatedWork W1566886392 @default.
- W2019438923 hasRelatedWork W1569389315 @default.
- W2019438923 hasRelatedWork W1992741870 @default.
- W2019438923 hasRelatedWork W2302028273 @default.
- W2019438923 hasRelatedWork W2364921833 @default.
- W2019438923 hasRelatedWork W2380023786 @default.
- W2019438923 hasRelatedWork W2385146268 @default.
- W2019438923 hasRelatedWork W2546696010 @default.
- W2019438923 hasRelatedWork W2503642292 @default.
- W2019438923 isParatext "false" @default.
- W2019438923 isRetracted "false" @default.
- W2019438923 magId "2019438923" @default.
- W2019438923 workType "article" @default.