Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019439052> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2019439052 abstract "In 1742, Euler found the generating function for P(n). Hardy said Ramanujan was the first, and upto now the only, Mathematician to discover any such properties of P(n). In 1952, Macmahon established a table of P(n) for the first 200 values of n. This paper showed how to find the number of partition of n by using Macmahon’s table. In 1742, Euler also stated the series in the enumeration of partitions. This Paper showed how to generate the Euler’s use of series in the enumeration of partitions. In 1952, Macmahon also quoted the self-conjuate partitions of n. In this Paper, Macmahon’s self-conjugate partitions are explained with the help of array of dots. This paper showed how to prove the Euler’s Theorems with the help of Euler’s device of the introduction of a second parameter z, and showed how to prove the Theorem 3 with the help of Euler’s generating function for P(n), and also showed how to prove the Theorem 4 with the help of certain conditions of P(n)." @default.
- W2019439052 created "2016-06-24" @default.
- W2019439052 creator A5032903615 @default.
- W2019439052 date "2014-11-22" @default.
- W2019439052 modified "2023-09-24" @default.
- W2019439052 title "Some Restricted Partition Functions" @default.
- W2019439052 cites W1986430388 @default.
- W2019439052 cites W3175367423 @default.
- W2019439052 doi "https://doi.org/10.12691/ajams-2-6-5" @default.
- W2019439052 hasPublicationYear "2014" @default.
- W2019439052 type Work @default.
- W2019439052 sameAs 2019439052 @default.
- W2019439052 citedByCount "0" @default.
- W2019439052 crossrefType "journal-article" @default.
- W2019439052 hasAuthorship W2019439052A5032903615 @default.
- W2019439052 hasBestOaLocation W20194390521 @default.
- W2019439052 hasConcept C114614502 @default.
- W2019439052 hasConcept C118615104 @default.
- W2019439052 hasConcept C124101348 @default.
- W2019439052 hasConcept C131220774 @default.
- W2019439052 hasConcept C134306372 @default.
- W2019439052 hasConcept C14036430 @default.
- W2019439052 hasConcept C143724316 @default.
- W2019439052 hasConcept C151730666 @default.
- W2019439052 hasConcept C156340839 @default.
- W2019439052 hasConcept C197336794 @default.
- W2019439052 hasConcept C202444582 @default.
- W2019439052 hasConcept C204911207 @default.
- W2019439052 hasConcept C33923547 @default.
- W2019439052 hasConcept C41008148 @default.
- W2019439052 hasConcept C42812 @default.
- W2019439052 hasConcept C45235069 @default.
- W2019439052 hasConcept C62884695 @default.
- W2019439052 hasConcept C78458016 @default.
- W2019439052 hasConcept C86803240 @default.
- W2019439052 hasConceptScore W2019439052C114614502 @default.
- W2019439052 hasConceptScore W2019439052C118615104 @default.
- W2019439052 hasConceptScore W2019439052C124101348 @default.
- W2019439052 hasConceptScore W2019439052C131220774 @default.
- W2019439052 hasConceptScore W2019439052C134306372 @default.
- W2019439052 hasConceptScore W2019439052C14036430 @default.
- W2019439052 hasConceptScore W2019439052C143724316 @default.
- W2019439052 hasConceptScore W2019439052C151730666 @default.
- W2019439052 hasConceptScore W2019439052C156340839 @default.
- W2019439052 hasConceptScore W2019439052C197336794 @default.
- W2019439052 hasConceptScore W2019439052C202444582 @default.
- W2019439052 hasConceptScore W2019439052C204911207 @default.
- W2019439052 hasConceptScore W2019439052C33923547 @default.
- W2019439052 hasConceptScore W2019439052C41008148 @default.
- W2019439052 hasConceptScore W2019439052C42812 @default.
- W2019439052 hasConceptScore W2019439052C45235069 @default.
- W2019439052 hasConceptScore W2019439052C62884695 @default.
- W2019439052 hasConceptScore W2019439052C78458016 @default.
- W2019439052 hasConceptScore W2019439052C86803240 @default.
- W2019439052 hasLocation W20194390521 @default.
- W2019439052 hasOpenAccess W2019439052 @default.
- W2019439052 hasPrimaryLocation W20194390521 @default.
- W2019439052 hasRelatedWork W1551179946 @default.
- W2019439052 hasRelatedWork W1616539672 @default.
- W2019439052 hasRelatedWork W1974041223 @default.
- W2019439052 hasRelatedWork W1977504082 @default.
- W2019439052 hasRelatedWork W1985838098 @default.
- W2019439052 hasRelatedWork W2024411410 @default.
- W2019439052 hasRelatedWork W2046123152 @default.
- W2019439052 hasRelatedWork W2068912818 @default.
- W2019439052 hasRelatedWork W2081516948 @default.
- W2019439052 hasRelatedWork W2171801067 @default.
- W2019439052 hasRelatedWork W2512665931 @default.
- W2019439052 hasRelatedWork W2569834454 @default.
- W2019439052 hasRelatedWork W260403028 @default.
- W2019439052 hasRelatedWork W2805815715 @default.
- W2019439052 hasRelatedWork W2902298788 @default.
- W2019439052 hasRelatedWork W2950518053 @default.
- W2019439052 hasRelatedWork W2963554163 @default.
- W2019439052 hasRelatedWork W2964142885 @default.
- W2019439052 hasRelatedWork W2993539469 @default.
- W2019439052 hasRelatedWork W3127975105 @default.
- W2019439052 isParatext "false" @default.
- W2019439052 isRetracted "false" @default.
- W2019439052 magId "2019439052" @default.
- W2019439052 workType "article" @default.