Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019450233> ?p ?o ?g. }
- W2019450233 abstract "Abstract Background Current histo-pathological prognostic factors are not very helpful in predicting the clinical outcome of breast cancer due to the disease's heterogeneity. Molecular profiling using a large panel of genes could help to classify breast tumours and to define signatures which are predictive of their clinical behaviour. Methods To this aim, quantitative RT-PCR amplification was used to study the RNA expression levels of 47 genes in 199 primary breast tumours and 6 normal breast tissues. Genes were selected on the basis of their potential implication in hormonal sensitivity of breast tumours. Normalized RT-PCR data were analysed in an unsupervised manner by pairwise hierarchical clustering, and the statistical relevance of the defined subclasses was assessed by Chi2 analysis. The robustness of the selected subgroups was evaluated by classifying an external and independent set of tumours using these Chi2-defined molecular signatures. Results Hierarchical clustering of gene expression data allowed us to define a series of tumour subgroups that were either reminiscent of previously reported classifications, or represented putative new subtypes. The Chi2 analysis of these subgroups allowed us to define specific molecular signatures for some of them whose reliability was further demonstrated by using the validation data set. A new breast cancer subclass, called subgroup 7, that we defined in that way, was particularly interesting as it gathered tumours with specific bioclinical features including a low rate of recurrence during a 5 year follow-up. Conclusion The analysis of the expression of 47 genes in 199 primary breast tumours allowed classifying them into a series of molecular subgroups. The subgroup 7, which has been highlighted by our study, was remarkable as it gathered tumours with specific bioclinical features including a low rate of recurrence. Although this finding should be confirmed by using a larger tumour cohort, it suggests that gene expression profiling using a minimal set of genes may allow the discovery of new subclasses of breast cancer that are characterized by specific molecular signatures and exhibit specific bioclinical features." @default.
- W2019450233 created "2016-06-24" @default.
- W2019450233 creator A5010727651 @default.
- W2019450233 creator A5019839327 @default.
- W2019450233 creator A5055965666 @default.
- W2019450233 creator A5059801254 @default.
- W2019450233 creator A5061204905 @default.
- W2019450233 creator A5071021061 @default.
- W2019450233 creator A5081933367 @default.
- W2019450233 creator A5083930386 @default.
- W2019450233 date "2007-03-05" @default.
- W2019450233 modified "2023-10-18" @default.
- W2019450233 title "A new molecular breast cancer subclass defined from a large scale real-time quantitative RT-PCR study" @default.
- W2019450233 cites W1510554288 @default.
- W2019450233 cites W1589403420 @default.
- W2019450233 cites W2021129827 @default.
- W2019450233 cites W2022441134 @default.
- W2019450233 cites W2044702943 @default.
- W2019450233 cites W2067687708 @default.
- W2019450233 cites W2096694106 @default.
- W2019450233 cites W2097255042 @default.
- W2019450233 cites W2099335989 @default.
- W2019450233 cites W2105882193 @default.
- W2019450233 cites W2125396123 @default.
- W2019450233 cites W2128985829 @default.
- W2019450233 cites W2131994307 @default.
- W2019450233 cites W2139372524 @default.
- W2019450233 cites W2147477438 @default.
- W2019450233 cites W2150926065 @default.
- W2019450233 cites W2156711378 @default.
- W2019450233 cites W2157840751 @default.
- W2019450233 cites W2158118614 @default.
- W2019450233 cites W2160450758 @default.
- W2019450233 cites W2168561598 @default.
- W2019450233 cites W2259802687 @default.
- W2019450233 doi "https://doi.org/10.1186/1471-2407-7-39" @default.
- W2019450233 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1828062" @default.
- W2019450233 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17338809" @default.
- W2019450233 hasPublicationYear "2007" @default.
- W2019450233 type Work @default.
- W2019450233 sameAs 2019450233 @default.
- W2019450233 citedByCount "17" @default.
- W2019450233 countsByYear W20194502332013 @default.
- W2019450233 countsByYear W20194502332014 @default.
- W2019450233 countsByYear W20194502332015 @default.
- W2019450233 countsByYear W20194502332017 @default.
- W2019450233 countsByYear W20194502332018 @default.
- W2019450233 countsByYear W20194502332021 @default.
- W2019450233 crossrefType "journal-article" @default.
- W2019450233 hasAuthorship W2019450233A5010727651 @default.
- W2019450233 hasAuthorship W2019450233A5019839327 @default.
- W2019450233 hasAuthorship W2019450233A5055965666 @default.
- W2019450233 hasAuthorship W2019450233A5059801254 @default.
- W2019450233 hasAuthorship W2019450233A5061204905 @default.
- W2019450233 hasAuthorship W2019450233A5071021061 @default.
- W2019450233 hasAuthorship W2019450233A5081933367 @default.
- W2019450233 hasAuthorship W2019450233A5083930386 @default.
- W2019450233 hasBestOaLocation W20194502331 @default.
- W2019450233 hasConcept C104317684 @default.
- W2019450233 hasConcept C119857082 @default.
- W2019450233 hasConcept C121608353 @default.
- W2019450233 hasConcept C126322002 @default.
- W2019450233 hasConcept C143998085 @default.
- W2019450233 hasConcept C150194340 @default.
- W2019450233 hasConcept C159654299 @default.
- W2019450233 hasConcept C18431079 @default.
- W2019450233 hasConcept C203014093 @default.
- W2019450233 hasConcept C2776194381 @default.
- W2019450233 hasConcept C2780140570 @default.
- W2019450233 hasConcept C41008148 @default.
- W2019450233 hasConcept C530470458 @default.
- W2019450233 hasConcept C54355233 @default.
- W2019450233 hasConcept C60644358 @default.
- W2019450233 hasConcept C70721500 @default.
- W2019450233 hasConcept C71924100 @default.
- W2019450233 hasConcept C73555534 @default.
- W2019450233 hasConcept C86803240 @default.
- W2019450233 hasConcept C92835128 @default.
- W2019450233 hasConceptScore W2019450233C104317684 @default.
- W2019450233 hasConceptScore W2019450233C119857082 @default.
- W2019450233 hasConceptScore W2019450233C121608353 @default.
- W2019450233 hasConceptScore W2019450233C126322002 @default.
- W2019450233 hasConceptScore W2019450233C143998085 @default.
- W2019450233 hasConceptScore W2019450233C150194340 @default.
- W2019450233 hasConceptScore W2019450233C159654299 @default.
- W2019450233 hasConceptScore W2019450233C18431079 @default.
- W2019450233 hasConceptScore W2019450233C203014093 @default.
- W2019450233 hasConceptScore W2019450233C2776194381 @default.
- W2019450233 hasConceptScore W2019450233C2780140570 @default.
- W2019450233 hasConceptScore W2019450233C41008148 @default.
- W2019450233 hasConceptScore W2019450233C530470458 @default.
- W2019450233 hasConceptScore W2019450233C54355233 @default.
- W2019450233 hasConceptScore W2019450233C60644358 @default.
- W2019450233 hasConceptScore W2019450233C70721500 @default.
- W2019450233 hasConceptScore W2019450233C71924100 @default.
- W2019450233 hasConceptScore W2019450233C73555534 @default.
- W2019450233 hasConceptScore W2019450233C86803240 @default.
- W2019450233 hasConceptScore W2019450233C92835128 @default.
- W2019450233 hasIssue "1" @default.
- W2019450233 hasLocation W20194502331 @default.