Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019466744> ?p ?o ?g. }
- W2019466744 endingPage "203" @default.
- W2019466744 startingPage "193" @default.
- W2019466744 abstract "Cold tolerant polar terrestrial arthropods have evolved a range of survival strategies which enable them to survive the most extreme environmental conditions (cold and drought) they are likely to encounter. Some species are classified as being freeze tolerant but the majority of those found in the Antarctic survive sub-zero temperatures by avoiding freezing by supercooling. For many arthropods, not just polar species, survival of desiccating conditions is equally important to survival of low temperatures. At sub-zero temperatures freeze avoiding arthropods are susceptible to desiccation and may lose water due to a vapour diffusion gradient between their supercooled body fluids and ice in their surroundings. This process ceases once the body fluids are frozen and so is not a problem for freeze tolerant species. This paper compares five polar arthropods, which have evolved different low temperature survival strategies, and the effects of exposure to sub-zero temperatures on their supercooling points (SCP) and water contents. The Antarctic oribatid mite (Alaskozetes antarcticus) reduced its supercooling point temperature from -6 to -30 degrees C, when exposed to decreasing sub-zero temperatures (cooled from 5 to -10 degrees C over 42 days) with little loss of body water during that period. However, Cryptopygus antarcticus, a springtail which occupies similar habitats in the Antarctic, showed a decrease in both water content and supercooling ability when exposed to the same experimental protocol. Both these Antarctic arthropods have evolved a freeze avoiding survival strategy. The Arctic springtail (Onychiurus arcticus), which is also freeze avoiding, dehydrated (from 2.4 to 0.7 g water g(-1) dry weight) at sub-zero temperatures and its SCP was lowered from c. -3 to below -15 degrees C in direct response to temperature (5 to -5.5 degrees C). In contrast, the freeze tolerant larvae of an Arctic fly (Heleomyza borealis) froze at c. -7 degrees C with little change in water content or SCP during further cold exposure and survived frozen to -60 degrees C. The partially freeze tolerant sub-Antarctic beetle Hydromedion sparsutum froze at c. -2 degrees C and is known to survive frozen to -8 degrees C. During the sub-zero temperature treatment, its water content reduced until it froze and then remained constant. The survival strategies of such freeze tolerant and freeze avoiding arthropods are discussed in relation to desiccation at sub-zero temperatures and the evolution of strategies of cold tolerance." @default.
- W2019466744 created "2016-06-24" @default.
- W2019466744 creator A5013722210 @default.
- W2019466744 creator A5055902903 @default.
- W2019466744 date "2003-03-01" @default.
- W2019466744 modified "2023-10-05" @default.
- W2019466744 title "Desiccation stress at sub-zero temperatures in polar terrestrial arthropods" @default.
- W2019466744 cites W1983764001 @default.
- W2019466744 cites W2005134801 @default.
- W2019466744 cites W2005227703 @default.
- W2019466744 cites W2007948539 @default.
- W2019466744 cites W2013490583 @default.
- W2019466744 cites W2014357182 @default.
- W2019466744 cites W2015023945 @default.
- W2019466744 cites W2019097825 @default.
- W2019466744 cites W2019876872 @default.
- W2019466744 cites W2027380456 @default.
- W2019466744 cites W2036938313 @default.
- W2019466744 cites W2039786191 @default.
- W2019466744 cites W2051001305 @default.
- W2019466744 cites W2055393082 @default.
- W2019466744 cites W2058564875 @default.
- W2019466744 cites W2058854274 @default.
- W2019466744 cites W2060214610 @default.
- W2019466744 cites W2063108105 @default.
- W2019466744 cites W2068784517 @default.
- W2019466744 cites W2069436780 @default.
- W2019466744 cites W2070878067 @default.
- W2019466744 cites W2073200380 @default.
- W2019466744 cites W2083130073 @default.
- W2019466744 cites W2088880848 @default.
- W2019466744 cites W2091097674 @default.
- W2019466744 cites W2095017843 @default.
- W2019466744 cites W2095316210 @default.
- W2019466744 cites W2110548515 @default.
- W2019466744 cites W2146545638 @default.
- W2019466744 cites W2160706746 @default.
- W2019466744 cites W2286864627 @default.
- W2019466744 cites W2313689929 @default.
- W2019466744 cites W2526675484 @default.
- W2019466744 cites W2534334619 @default.
- W2019466744 cites W4231685787 @default.
- W2019466744 doi "https://doi.org/10.1016/s0022-1910(02)00264-0" @default.
- W2019466744 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/12769994" @default.
- W2019466744 hasPublicationYear "2003" @default.
- W2019466744 type Work @default.
- W2019466744 sameAs 2019466744 @default.
- W2019466744 citedByCount "59" @default.
- W2019466744 countsByYear W20194667442012 @default.
- W2019466744 countsByYear W20194667442013 @default.
- W2019466744 countsByYear W20194667442014 @default.
- W2019466744 countsByYear W20194667442015 @default.
- W2019466744 countsByYear W20194667442017 @default.
- W2019466744 countsByYear W20194667442018 @default.
- W2019466744 countsByYear W20194667442019 @default.
- W2019466744 countsByYear W20194667442020 @default.
- W2019466744 countsByYear W20194667442021 @default.
- W2019466744 countsByYear W20194667442022 @default.
- W2019466744 countsByYear W20194667442023 @default.
- W2019466744 crossrefType "journal-article" @default.
- W2019466744 hasAuthorship W2019466744A5013722210 @default.
- W2019466744 hasAuthorship W2019466744A5055902903 @default.
- W2019466744 hasConcept C112964491 @default.
- W2019466744 hasConcept C115346097 @default.
- W2019466744 hasConcept C121332964 @default.
- W2019466744 hasConcept C1276947 @default.
- W2019466744 hasConcept C18903297 @default.
- W2019466744 hasConcept C2780978871 @default.
- W2019466744 hasConcept C29705727 @default.
- W2019466744 hasConcept C2992111332 @default.
- W2019466744 hasConcept C50402729 @default.
- W2019466744 hasConcept C59822182 @default.
- W2019466744 hasConcept C86803240 @default.
- W2019466744 hasConcept C90856448 @default.
- W2019466744 hasConcept C97355855 @default.
- W2019466744 hasConceptScore W2019466744C112964491 @default.
- W2019466744 hasConceptScore W2019466744C115346097 @default.
- W2019466744 hasConceptScore W2019466744C121332964 @default.
- W2019466744 hasConceptScore W2019466744C1276947 @default.
- W2019466744 hasConceptScore W2019466744C18903297 @default.
- W2019466744 hasConceptScore W2019466744C2780978871 @default.
- W2019466744 hasConceptScore W2019466744C29705727 @default.
- W2019466744 hasConceptScore W2019466744C2992111332 @default.
- W2019466744 hasConceptScore W2019466744C50402729 @default.
- W2019466744 hasConceptScore W2019466744C59822182 @default.
- W2019466744 hasConceptScore W2019466744C86803240 @default.
- W2019466744 hasConceptScore W2019466744C90856448 @default.
- W2019466744 hasConceptScore W2019466744C97355855 @default.
- W2019466744 hasIssue "3" @default.
- W2019466744 hasLocation W20194667441 @default.
- W2019466744 hasLocation W20194667442 @default.
- W2019466744 hasOpenAccess W2019466744 @default.
- W2019466744 hasPrimaryLocation W20194667441 @default.
- W2019466744 hasRelatedWork W1546677437 @default.
- W2019466744 hasRelatedWork W193639619 @default.
- W2019466744 hasRelatedWork W1977077602 @default.
- W2019466744 hasRelatedWork W1997604438 @default.
- W2019466744 hasRelatedWork W2019466744 @default.