Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019486547> ?p ?o ?g. }
- W2019486547 endingPage "1466" @default.
- W2019486547 startingPage "1451" @default.
- W2019486547 abstract "Given a quantum subgroup G⊂Un and a number k≤n we can form the homogeneous space X=G/(G∩Uk), and it follows from the Stone–Weierstrass theorem that C(X) is the algebra generated by the last n−k rows of coordinates on G. In the quantum group case the analogue of this basic result does not necessarily hold, and we discuss here its validity, notably with a complete answer in the group dual case. We focus then on the “easy quantum group” case, with the construction and study of several algebras associated to the noncommutative spaces of type X=G/(G∩Uk+)." @default.
- W2019486547 created "2016-06-24" @default.
- W2019486547 creator A5014147712 @default.
- W2019486547 creator A5025328470 @default.
- W2019486547 creator A5040087994 @default.
- W2019486547 date "2012-06-01" @default.
- W2019486547 modified "2023-09-26" @default.
- W2019486547 title "Noncommutative homogeneous spaces: The matrix case" @default.
- W2019486547 cites W1557213917 @default.
- W2019486547 cites W1978048313 @default.
- W2019486547 cites W1978960972 @default.
- W2019486547 cites W1982181961 @default.
- W2019486547 cites W1984845095 @default.
- W2019486547 cites W1991419242 @default.
- W2019486547 cites W2001629396 @default.
- W2019486547 cites W2003493564 @default.
- W2019486547 cites W2021115151 @default.
- W2019486547 cites W2037328702 @default.
- W2019486547 cites W2041306468 @default.
- W2019486547 cites W2041633984 @default.
- W2019486547 cites W2063099505 @default.
- W2019486547 cites W2074465122 @default.
- W2019486547 cites W2086216948 @default.
- W2019486547 cites W2086438082 @default.
- W2019486547 cites W2086681482 @default.
- W2019486547 cites W2100438363 @default.
- W2019486547 cites W2114346036 @default.
- W2019486547 cites W2116462696 @default.
- W2019486547 cites W2116870865 @default.
- W2019486547 cites W2148984222 @default.
- W2019486547 cites W2165791181 @default.
- W2019486547 cites W2166062653 @default.
- W2019486547 cites W2962992242 @default.
- W2019486547 cites W2963385684 @default.
- W2019486547 cites W2963434924 @default.
- W2019486547 cites W2963655361 @default.
- W2019486547 cites W2963879215 @default.
- W2019486547 cites W2964271472 @default.
- W2019486547 cites W3100086761 @default.
- W2019486547 cites W3105516501 @default.
- W2019486547 cites W3105845590 @default.
- W2019486547 doi "https://doi.org/10.1016/j.geomphys.2012.02.003" @default.
- W2019486547 hasPublicationYear "2012" @default.
- W2019486547 type Work @default.
- W2019486547 sameAs 2019486547 @default.
- W2019486547 citedByCount "21" @default.
- W2019486547 countsByYear W20194865472012 @default.
- W2019486547 countsByYear W20194865472013 @default.
- W2019486547 countsByYear W20194865472014 @default.
- W2019486547 countsByYear W20194865472015 @default.
- W2019486547 countsByYear W20194865472016 @default.
- W2019486547 countsByYear W20194865472017 @default.
- W2019486547 countsByYear W20194865472018 @default.
- W2019486547 countsByYear W20194865472019 @default.
- W2019486547 countsByYear W20194865472022 @default.
- W2019486547 countsByYear W20194865472023 @default.
- W2019486547 crossrefType "journal-article" @default.
- W2019486547 hasAuthorship W2019486547A5014147712 @default.
- W2019486547 hasAuthorship W2019486547A5025328470 @default.
- W2019486547 hasAuthorship W2019486547A5040087994 @default.
- W2019486547 hasBestOaLocation W20194865472 @default.
- W2019486547 hasConcept C106487976 @default.
- W2019486547 hasConcept C114614502 @default.
- W2019486547 hasConcept C116827671 @default.
- W2019486547 hasConcept C118615104 @default.
- W2019486547 hasConcept C121332964 @default.
- W2019486547 hasConcept C136119220 @default.
- W2019486547 hasConcept C138885662 @default.
- W2019486547 hasConcept C148647251 @default.
- W2019486547 hasConcept C159985019 @default.
- W2019486547 hasConcept C18903297 @default.
- W2019486547 hasConcept C192562407 @default.
- W2019486547 hasConcept C202444582 @default.
- W2019486547 hasConcept C2777299769 @default.
- W2019486547 hasConcept C2778572836 @default.
- W2019486547 hasConcept C2781311116 @default.
- W2019486547 hasConcept C29384965 @default.
- W2019486547 hasConcept C33923547 @default.
- W2019486547 hasConcept C41895202 @default.
- W2019486547 hasConcept C52465356 @default.
- W2019486547 hasConcept C62520636 @default.
- W2019486547 hasConcept C66882249 @default.
- W2019486547 hasConcept C68797384 @default.
- W2019486547 hasConcept C84114770 @default.
- W2019486547 hasConcept C86803240 @default.
- W2019486547 hasConceptScore W2019486547C106487976 @default.
- W2019486547 hasConceptScore W2019486547C114614502 @default.
- W2019486547 hasConceptScore W2019486547C116827671 @default.
- W2019486547 hasConceptScore W2019486547C118615104 @default.
- W2019486547 hasConceptScore W2019486547C121332964 @default.
- W2019486547 hasConceptScore W2019486547C136119220 @default.
- W2019486547 hasConceptScore W2019486547C138885662 @default.
- W2019486547 hasConceptScore W2019486547C148647251 @default.
- W2019486547 hasConceptScore W2019486547C159985019 @default.
- W2019486547 hasConceptScore W2019486547C18903297 @default.
- W2019486547 hasConceptScore W2019486547C192562407 @default.
- W2019486547 hasConceptScore W2019486547C202444582 @default.
- W2019486547 hasConceptScore W2019486547C2777299769 @default.