Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019487260> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2019487260 abstract "Bayesian target tracking methods consist in filtering successive measurements coming from a detector. In the presence of clutter or multiple targets, the filter must be coupled with an association procedure. The classical Bayesian multitarget tracking methods rely on the hypothesis that a target can generate at most one measurement per scan and that a measurement originates from at most one target. When tracking a high number of deformable sources, the previous assumptions are often not met that leads to the failure of the existing methods. Here, we propose an algorithm which allows to perform the tracking in the cases when a single target generates several measurements or several targets generate a single measurement. The novel idea presented in this paper is the introduction of a set that we call virtual measurement set which supersedes and extends the set of measurements. This set is chosen to optimally fit the set of the predicted measurements at each time step. This is done in two stages: i) a set of feasible joint association events is built from virtual measurements that are created by successively splitting and merging the real measurements; ii) the joint probability is maximized over all feasible joint association events. The method has been tested on microscopy image sequences which typically contains densely moving objects and gives satisfactory preliminary results." @default.
- W2019487260 created "2016-06-24" @default.
- W2019487260 creator A5060639488 @default.
- W2019487260 creator A5064234141 @default.
- W2019487260 date "2004-08-26" @default.
- W2019487260 modified "2023-10-16" @default.
- W2019487260 title "Split and merge data association filter for dense multi-target tracking" @default.
- W2019487260 cites W1579598343 @default.
- W2019487260 cites W1995583822 @default.
- W2019487260 cites W2097183228 @default.
- W2019487260 cites W2100548006 @default.
- W2019487260 cites W2103892029 @default.
- W2019487260 cites W2105934661 @default.
- W2019487260 cites W2117397690 @default.
- W2019487260 cites W2127923214 @default.
- W2019487260 cites W2139688603 @default.
- W2019487260 cites W2145555609 @default.
- W2019487260 cites W2160337655 @default.
- W2019487260 cites W3187867541 @default.
- W2019487260 cites W80300543 @default.
- W2019487260 cites W1561837455 @default.
- W2019487260 hasPublicationYear "2004" @default.
- W2019487260 type Work @default.
- W2019487260 sameAs 2019487260 @default.
- W2019487260 citedByCount "18" @default.
- W2019487260 countsByYear W20194872602014 @default.
- W2019487260 countsByYear W20194872602015 @default.
- W2019487260 countsByYear W20194872602017 @default.
- W2019487260 crossrefType "proceedings-article" @default.
- W2019487260 hasAuthorship W2019487260A5060639488 @default.
- W2019487260 hasAuthorship W2019487260A5064234141 @default.
- W2019487260 hasConcept C106131492 @default.
- W2019487260 hasConcept C111472728 @default.
- W2019487260 hasConcept C138885662 @default.
- W2019487260 hasConcept C142853389 @default.
- W2019487260 hasConcept C154945302 @default.
- W2019487260 hasConcept C197129107 @default.
- W2019487260 hasConcept C23123220 @default.
- W2019487260 hasConcept C2983325608 @default.
- W2019487260 hasConcept C31972630 @default.
- W2019487260 hasConcept C32283439 @default.
- W2019487260 hasConcept C41008148 @default.
- W2019487260 hasConcept C554190296 @default.
- W2019487260 hasConcept C76155785 @default.
- W2019487260 hasConceptScore W2019487260C106131492 @default.
- W2019487260 hasConceptScore W2019487260C111472728 @default.
- W2019487260 hasConceptScore W2019487260C138885662 @default.
- W2019487260 hasConceptScore W2019487260C142853389 @default.
- W2019487260 hasConceptScore W2019487260C154945302 @default.
- W2019487260 hasConceptScore W2019487260C197129107 @default.
- W2019487260 hasConceptScore W2019487260C23123220 @default.
- W2019487260 hasConceptScore W2019487260C2983325608 @default.
- W2019487260 hasConceptScore W2019487260C31972630 @default.
- W2019487260 hasConceptScore W2019487260C32283439 @default.
- W2019487260 hasConceptScore W2019487260C41008148 @default.
- W2019487260 hasConceptScore W2019487260C554190296 @default.
- W2019487260 hasConceptScore W2019487260C76155785 @default.
- W2019487260 hasLocation W20194872601 @default.
- W2019487260 hasOpenAccess W2019487260 @default.
- W2019487260 hasPrimaryLocation W20194872601 @default.
- W2019487260 hasRelatedWork W1508396260 @default.
- W2019487260 hasRelatedWork W1509950513 @default.
- W2019487260 hasRelatedWork W1983340871 @default.
- W2019487260 hasRelatedWork W2051051698 @default.
- W2019487260 hasRelatedWork W2093931670 @default.
- W2019487260 hasRelatedWork W2133157305 @default.
- W2019487260 hasRelatedWork W2171787258 @default.
- W2019487260 hasRelatedWork W3080115630 @default.
- W2019487260 hasRelatedWork W3092176091 @default.
- W2019487260 hasRelatedWork W4234373170 @default.
- W2019487260 isParatext "false" @default.
- W2019487260 isRetracted "false" @default.
- W2019487260 magId "2019487260" @default.
- W2019487260 workType "article" @default.