Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019502814> ?p ?o ?g. }
- W2019502814 abstract "Fault diagnosis is very important to ensure the safe operation of hydraulic generator units (HGU). Because of the complexity of HGU, the vast amounts of measured data and the redundant information, the accuracy and instantaneity of fault diagnosis are severely limited. At present, feature selection technique is an effective method to break through this bottleneck. According to the specific characteristics of HGU faults, this paper puts forward a hierarchical feature selection method based on classification tree (HFSMCT). HFSMCT selects the most effective feature for each branch node through filtering evaluation criteria and heuristic search strategy, and all the selected features constitute the final feature set. Moreover, HFSMCT is easy to design and implement, and it is very prominent in computational efficiency and accuracy. The simulation results also prove that HFSMCT is very suitable for HGU fault diagnosis." @default.
- W2019502814 created "2016-06-24" @default.
- W2019502814 creator A5011438673 @default.
- W2019502814 creator A5067893762 @default.
- W2019502814 creator A5079717153 @default.
- W2019502814 creator A5090051459 @default.
- W2019502814 date "2014-10-01" @default.
- W2019502814 modified "2023-09-27" @default.
- W2019502814 title "A Hierarchical Feature Selection Method Based on Classification Tree for HGU Fault Diagnosis" @default.
- W2019502814 cites W1523989055 @default.
- W2019502814 cites W1597240684 @default.
- W2019502814 cites W2005222981 @default.
- W2019502814 cites W2034652182 @default.
- W2019502814 cites W2035051484 @default.
- W2019502814 cites W2040884411 @default.
- W2019502814 cites W2058934376 @default.
- W2019502814 cites W2073503104 @default.
- W2019502814 cites W2076179745 @default.
- W2019502814 cites W2077922582 @default.
- W2019502814 cites W2102708620 @default.
- W2019502814 cites W2128589733 @default.
- W2019502814 cites W2146699109 @default.
- W2019502814 cites W2149781775 @default.
- W2019502814 cites W2153678774 @default.
- W2019502814 cites W4206582607 @default.
- W2019502814 doi "https://doi.org/10.4028/www.scientific.net/amr.1037.398" @default.
- W2019502814 hasPublicationYear "2014" @default.
- W2019502814 type Work @default.
- W2019502814 sameAs 2019502814 @default.
- W2019502814 citedByCount "1" @default.
- W2019502814 countsByYear W20195028142019 @default.
- W2019502814 crossrefType "journal-article" @default.
- W2019502814 hasAuthorship W2019502814A5011438673 @default.
- W2019502814 hasAuthorship W2019502814A5067893762 @default.
- W2019502814 hasAuthorship W2019502814A5079717153 @default.
- W2019502814 hasAuthorship W2019502814A5090051459 @default.
- W2019502814 hasConcept C119857082 @default.
- W2019502814 hasConcept C124101348 @default.
- W2019502814 hasConcept C127313418 @default.
- W2019502814 hasConcept C127413603 @default.
- W2019502814 hasConcept C138885662 @default.
- W2019502814 hasConcept C148483581 @default.
- W2019502814 hasConcept C149635348 @default.
- W2019502814 hasConcept C153180895 @default.
- W2019502814 hasConcept C154945302 @default.
- W2019502814 hasConcept C165205528 @default.
- W2019502814 hasConcept C173801870 @default.
- W2019502814 hasConcept C175551986 @default.
- W2019502814 hasConcept C177264268 @default.
- W2019502814 hasConcept C199360897 @default.
- W2019502814 hasConcept C2776401178 @default.
- W2019502814 hasConcept C2780513914 @default.
- W2019502814 hasConcept C41008148 @default.
- W2019502814 hasConcept C41895202 @default.
- W2019502814 hasConcept C62611344 @default.
- W2019502814 hasConcept C66938386 @default.
- W2019502814 hasConcept C81917197 @default.
- W2019502814 hasConceptScore W2019502814C119857082 @default.
- W2019502814 hasConceptScore W2019502814C124101348 @default.
- W2019502814 hasConceptScore W2019502814C127313418 @default.
- W2019502814 hasConceptScore W2019502814C127413603 @default.
- W2019502814 hasConceptScore W2019502814C138885662 @default.
- W2019502814 hasConceptScore W2019502814C148483581 @default.
- W2019502814 hasConceptScore W2019502814C149635348 @default.
- W2019502814 hasConceptScore W2019502814C153180895 @default.
- W2019502814 hasConceptScore W2019502814C154945302 @default.
- W2019502814 hasConceptScore W2019502814C165205528 @default.
- W2019502814 hasConceptScore W2019502814C173801870 @default.
- W2019502814 hasConceptScore W2019502814C175551986 @default.
- W2019502814 hasConceptScore W2019502814C177264268 @default.
- W2019502814 hasConceptScore W2019502814C199360897 @default.
- W2019502814 hasConceptScore W2019502814C2776401178 @default.
- W2019502814 hasConceptScore W2019502814C2780513914 @default.
- W2019502814 hasConceptScore W2019502814C41008148 @default.
- W2019502814 hasConceptScore W2019502814C41895202 @default.
- W2019502814 hasConceptScore W2019502814C62611344 @default.
- W2019502814 hasConceptScore W2019502814C66938386 @default.
- W2019502814 hasConceptScore W2019502814C81917197 @default.
- W2019502814 hasLocation W20195028141 @default.
- W2019502814 hasOpenAccess W2019502814 @default.
- W2019502814 hasPrimaryLocation W20195028141 @default.
- W2019502814 hasRelatedWork W1977992479 @default.
- W2019502814 hasRelatedWork W2034652182 @default.
- W2019502814 hasRelatedWork W2045554273 @default.
- W2019502814 hasRelatedWork W2160888889 @default.
- W2019502814 hasRelatedWork W2171778128 @default.
- W2019502814 hasRelatedWork W2353477226 @default.
- W2019502814 hasRelatedWork W2364476764 @default.
- W2019502814 hasRelatedWork W2369141928 @default.
- W2019502814 hasRelatedWork W2371792713 @default.
- W2019502814 hasRelatedWork W2372402720 @default.
- W2019502814 hasRelatedWork W2529218598 @default.
- W2019502814 hasRelatedWork W2734927467 @default.
- W2019502814 hasRelatedWork W3094985807 @default.
- W2019502814 hasRelatedWork W3130694260 @default.
- W2019502814 hasRelatedWork W2344060915 @default.
- W2019502814 hasRelatedWork W2861583383 @default.
- W2019502814 hasRelatedWork W2975202105 @default.
- W2019502814 hasRelatedWork W3155040525 @default.
- W2019502814 hasRelatedWork W3166721474 @default.