Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019558487> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2019558487 endingPage "379" @default.
- W2019558487 startingPage "359" @default.
- W2019558487 abstract "A method of iterated integration along paths is used to extend deRham cohomology theory to a homotopy theory on the fundamental group level. For every connected <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper C Superscript normal infinity> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>C</mml:mi> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>{C^infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> manifold <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=German upper M> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>M</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathfrak {M}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with a base point <italic>p</italic>, we construct an algebra <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=pi Superscript 1 Baseline equals pi Superscript 1 Baseline left-parenthesis German upper M comma p right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>π<!-- π --></mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:mo>=</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>π<!-- π --></mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>M</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>p</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>{pi ^1} = {pi ^1}(mathfrak {M},p)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> consisting of iterated integrals, whose value along each loop at <italic>p</italic> depends only on the homotopy class of the loop. Thus <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=pi Superscript 1> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>π<!-- π --></mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>{pi ^1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can be taken as a commutative algebra of functions on the fundamental group <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=pi 1 left-parenthesis German upper M right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>π<!-- π --></mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>M</mml:mi> </mml:mrow> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>{pi _1}(mathfrak {M})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, whose multiplication induces a comultiplication <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=pi Superscript 1 Baseline right-arrow pi Superscript 1 Baseline circled-times pi Superscript 1> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>π<!-- π --></mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy=false>→<!-- → --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>π<!-- π --></mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>π<!-- π --></mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding=application/x-tex>{pi ^1} to {pi ^1} otimes {pi ^1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which makes <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=pi Superscript 1> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>π<!-- π --></mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>{pi ^1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a Hopf algebra. The algebra <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=pi Superscript 1> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>π<!-- π --></mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>{pi ^1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> relates the fundamental group to analysis of the manifold, and we obtain some analytical conditions which are sufficient to make the fundamental group nonabelian or nonsolvable. We also show that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=pi Superscript 1> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>π<!-- π --></mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>{pi ^1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> depends essentially only on the differentiable homotopy type of the manifold. The second half of the paper is devoted to the study of structures of algebras of iterated path integrals. We prove that such algebras can be constructed algebraically from the following data: (a) the commutative algebra <italic>A</italic> of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper C Superscript normal infinity> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>C</mml:mi> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>{C^infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> functions on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=German upper M> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>M</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathfrak {M}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; (b) the <italic>A</italic>-module <italic>M</italic> of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper C Superscript normal infinity> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>C</mml:mi> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>{C^infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> 1-forms on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=German upper M> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>M</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathfrak {M}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; (c) the usual differentiation <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=d colon upper A right-arrow upper M> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>:</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=false>→<!-- → --></mml:mo> <mml:mi>M</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>d:A to M</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; and (d) the evaluation map at the base point <italic>p</italic>, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=epsilon colon upper A right-arrow upper K> <mml:semantics> <mml:mrow> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo>:</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=false>→<!-- → --></mml:mo> <mml:mi>K</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>varepsilon :A to K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <italic>K</italic> being the real (or complex) number field." @default.
- W2019558487 created "2016-06-24" @default.
- W2019558487 creator A5025696172 @default.
- W2019558487 date "1971-01-01" @default.
- W2019558487 modified "2023-10-18" @default.
- W2019558487 title "Algebras of iterated path integrals and fundamental groups" @default.
- W2019558487 cites W1983373140 @default.
- W2019558487 cites W1994046612 @default.
- W2019558487 cites W1995543921 @default.
- W2019558487 cites W2024068856 @default.
- W2019558487 cites W2035039910 @default.
- W2019558487 cites W2055496831 @default.
- W2019558487 cites W2085067956 @default.
- W2019558487 cites W2321285931 @default.
- W2019558487 cites W2321579306 @default.
- W2019558487 cites W2335141413 @default.
- W2019558487 cites W3146797348 @default.
- W2019558487 cites W4213207061 @default.
- W2019558487 cites W4234394526 @default.
- W2019558487 cites W4242585362 @default.
- W2019558487 cites W4243874544 @default.
- W2019558487 doi "https://doi.org/10.1090/s0002-9947-1971-0275312-1" @default.
- W2019558487 hasPublicationYear "1971" @default.
- W2019558487 type Work @default.
- W2019558487 sameAs 2019558487 @default.
- W2019558487 citedByCount "126" @default.
- W2019558487 countsByYear W20195584872012 @default.
- W2019558487 countsByYear W20195584872013 @default.
- W2019558487 countsByYear W20195584872014 @default.
- W2019558487 countsByYear W20195584872015 @default.
- W2019558487 countsByYear W20195584872016 @default.
- W2019558487 countsByYear W20195584872017 @default.
- W2019558487 countsByYear W20195584872018 @default.
- W2019558487 countsByYear W20195584872019 @default.
- W2019558487 countsByYear W20195584872020 @default.
- W2019558487 countsByYear W20195584872021 @default.
- W2019558487 countsByYear W20195584872022 @default.
- W2019558487 countsByYear W20195584872023 @default.
- W2019558487 crossrefType "journal-article" @default.
- W2019558487 hasAuthorship W2019558487A5025696172 @default.
- W2019558487 hasBestOaLocation W20195584871 @default.
- W2019558487 hasConcept C11413529 @default.
- W2019558487 hasConcept C154945302 @default.
- W2019558487 hasConcept C33923547 @default.
- W2019558487 hasConcept C41008148 @default.
- W2019558487 hasConceptScore W2019558487C11413529 @default.
- W2019558487 hasConceptScore W2019558487C154945302 @default.
- W2019558487 hasConceptScore W2019558487C33923547 @default.
- W2019558487 hasConceptScore W2019558487C41008148 @default.
- W2019558487 hasIssue "0" @default.
- W2019558487 hasLocation W20195584871 @default.
- W2019558487 hasOpenAccess W2019558487 @default.
- W2019558487 hasPrimaryLocation W20195584871 @default.
- W2019558487 hasRelatedWork W1974891317 @default.
- W2019558487 hasRelatedWork W1979597421 @default.
- W2019558487 hasRelatedWork W2007980826 @default.
- W2019558487 hasRelatedWork W2351491280 @default.
- W2019558487 hasRelatedWork W2371447506 @default.
- W2019558487 hasRelatedWork W2386767533 @default.
- W2019558487 hasRelatedWork W2748952813 @default.
- W2019558487 hasRelatedWork W2899084033 @default.
- W2019558487 hasRelatedWork W303980170 @default.
- W2019558487 hasRelatedWork W3107474891 @default.
- W2019558487 hasVolume "156" @default.
- W2019558487 isParatext "false" @default.
- W2019558487 isRetracted "false" @default.
- W2019558487 magId "2019558487" @default.
- W2019558487 workType "article" @default.