Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019585418> ?p ?o ?g. }
- W2019585418 abstract "The primary objective in multi-pass turning operations is to produce products with low cost and high quality, with a lower number of cuts. Parameter optimization plays an important role in achieving this goal. Process parameter optimization in a multi-pass turning operation usually involves the optimal selection of cutting speed, feed rate, depth of cut and number of passes. In this work, the parameter optimization of a multi-pass turning operation is carried out using a recently developed advanced optimization algorithm, named, the teaching–learning-based optimization algorithm. Two different examples are considered that have been attempted previously by various researchers using different optimization techniques, such as simulated annealing, the genetic algorithm, the ant colony algorithm, and particle swarm optimization, etc. The first example is a multi-objective problem and the second example is a single objective multi-constrained problem with 20 constraints. The teaching–learning-based optimization algorithm has proved its effectiveness over other algorithms." @default.
- W2019585418 created "2016-06-24" @default.
- W2019585418 creator A5008764706 @default.
- W2019585418 creator A5069123141 @default.
- W2019585418 date "2013-01-01" @default.
- W2019585418 modified "2023-10-15" @default.
- W2019585418 title "Multi-pass turning process parameter optimization using teaching–learning-based optimization algorithm" @default.
- W2019585418 cites W1964346620 @default.
- W2019585418 cites W1971545732 @default.
- W2019585418 cites W1978597958 @default.
- W2019585418 cites W1978770342 @default.
- W2019585418 cites W1981793879 @default.
- W2019585418 cites W1989306251 @default.
- W2019585418 cites W1991375301 @default.
- W2019585418 cites W1991387385 @default.
- W2019585418 cites W1998151312 @default.
- W2019585418 cites W1999284878 @default.
- W2019585418 cites W2001422417 @default.
- W2019585418 cites W2002800366 @default.
- W2019585418 cites W2008031251 @default.
- W2019585418 cites W2017748170 @default.
- W2019585418 cites W2017960455 @default.
- W2019585418 cites W2019341194 @default.
- W2019585418 cites W2021490042 @default.
- W2019585418 cites W2032372979 @default.
- W2019585418 cites W2033864775 @default.
- W2019585418 cites W2038969653 @default.
- W2019585418 cites W2043493849 @default.
- W2019585418 cites W2049250613 @default.
- W2019585418 cites W2049653466 @default.
- W2019585418 cites W2057758711 @default.
- W2019585418 cites W2059862699 @default.
- W2019585418 cites W2061313076 @default.
- W2019585418 cites W2066181217 @default.
- W2019585418 cites W2069375473 @default.
- W2019585418 cites W2074507399 @default.
- W2019585418 cites W2087123542 @default.
- W2019585418 cites W2088592288 @default.
- W2019585418 cites W2098100436 @default.
- W2019585418 cites W2114159513 @default.
- W2019585418 cites W2120922109 @default.
- W2019585418 cites W2129120446 @default.
- W2019585418 cites W2144104802 @default.
- W2019585418 cites W2150752897 @default.
- W2019585418 cites W2151255407 @default.
- W2019585418 cites W2154842556 @default.
- W2019585418 cites W2163259907 @default.
- W2019585418 cites W65211556 @default.
- W2019585418 doi "https://doi.org/10.1016/j.scient.2013.01.002" @default.
- W2019585418 hasPublicationYear "2013" @default.
- W2019585418 type Work @default.
- W2019585418 sameAs 2019585418 @default.
- W2019585418 citedByCount "28" @default.
- W2019585418 countsByYear W20195854182013 @default.
- W2019585418 countsByYear W20195854182014 @default.
- W2019585418 countsByYear W20195854182015 @default.
- W2019585418 countsByYear W20195854182016 @default.
- W2019585418 countsByYear W20195854182017 @default.
- W2019585418 countsByYear W20195854182018 @default.
- W2019585418 countsByYear W20195854182019 @default.
- W2019585418 countsByYear W20195854182020 @default.
- W2019585418 countsByYear W20195854182021 @default.
- W2019585418 countsByYear W20195854182022 @default.
- W2019585418 countsByYear W20195854182023 @default.
- W2019585418 crossrefType "journal-article" @default.
- W2019585418 hasAuthorship W2019585418A5008764706 @default.
- W2019585418 hasAuthorship W2019585418A5069123141 @default.
- W2019585418 hasBestOaLocation W20195854181 @default.
- W2019585418 hasConcept C109718341 @default.
- W2019585418 hasConcept C111919701 @default.
- W2019585418 hasConcept C11413529 @default.
- W2019585418 hasConcept C122357587 @default.
- W2019585418 hasConcept C126255220 @default.
- W2019585418 hasConcept C126980161 @default.
- W2019585418 hasConcept C137836250 @default.
- W2019585418 hasConcept C29282572 @default.
- W2019585418 hasConcept C2987595161 @default.
- W2019585418 hasConcept C33923547 @default.
- W2019585418 hasConcept C40128228 @default.
- W2019585418 hasConcept C41008148 @default.
- W2019585418 hasConcept C4935549 @default.
- W2019585418 hasConcept C85617194 @default.
- W2019585418 hasConcept C8880873 @default.
- W2019585418 hasConcept C92995354 @default.
- W2019585418 hasConcept C98045186 @default.
- W2019585418 hasConceptScore W2019585418C109718341 @default.
- W2019585418 hasConceptScore W2019585418C111919701 @default.
- W2019585418 hasConceptScore W2019585418C11413529 @default.
- W2019585418 hasConceptScore W2019585418C122357587 @default.
- W2019585418 hasConceptScore W2019585418C126255220 @default.
- W2019585418 hasConceptScore W2019585418C126980161 @default.
- W2019585418 hasConceptScore W2019585418C137836250 @default.
- W2019585418 hasConceptScore W2019585418C29282572 @default.
- W2019585418 hasConceptScore W2019585418C2987595161 @default.
- W2019585418 hasConceptScore W2019585418C33923547 @default.
- W2019585418 hasConceptScore W2019585418C40128228 @default.
- W2019585418 hasConceptScore W2019585418C41008148 @default.
- W2019585418 hasConceptScore W2019585418C4935549 @default.
- W2019585418 hasConceptScore W2019585418C85617194 @default.
- W2019585418 hasConceptScore W2019585418C8880873 @default.