Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019587480> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2019587480 abstract "Abstract This paper describes the issues and possible solutions involved in the application of 3D data-driven multiple removal in a marine production environment. The optimization of marine data acquisition for 3D SRME processing solutions is discussed. Secondly, the impact of marine data acquisition on the ability to predict 3D multiples is analyzed. Results from a controlled modeling experiment indicate that a dense grid of saillines and streamers are beneficial to predicting the full 3D characteristics of the multiples. Thirdly, a three-step processing sequence is proposed to predict and remove 3D multiples for each sail line using only the recorded data around the output streamer. The proposed strategy does not rely on any a priori information or model of the subsurface to remove 3D multiples. Finally, results for a field data set from the Norwegian Sea are shown. The application of 3D SRME leads to results that could not be obtained using its 2D equivalent, or any other method. Introduction The removal of free-surface multiples from seismic reflection data remains an essential processing step before the application of prestack migration. Slowly decaying water layer multiples arising from a strong impedance contrast at the sea floor severely degrade the quality of the seismogram. In addition, peg legs are generated from structurally complex 3D sedimentary bodies to create a complex set of reverberations that can easily obscure weak primary reflections. In other areas, diffracted multiples from shallow point diffractors generate a 'cloud' of multiple energy masking underlying primaries. Over the years, many different methods have been developed to attack these problems; these may be subdivided into four major types:Statistical methods, where assumptions on the statistical properties of the Earth's impulse response are used to predict multiples.Differential move-out methods, where primaries and multiples are assumed to have different move-out properties.Model driven methods, where a priori information about the multiple-generating interface is used to predict multiples.Surface-related multiple elimination methods (SRME), where the measured data itself are used to predict multiples. For many years, statistical methods (like predictive deconvolution), differential move-out methods (Radon, f-k methods), and model-driven methods (often based on prestack wave-field extrapolations using a model of the subsurface) have been able to attenuate multiple-energy successfully, and they will continue to do so. However, the reliability of the inherent assumptions and/or the accuracy of the user-provided a priori information, as well as the level of user-interaction required make these methods less suitable for true 3D multiple removal. In recent years, surface-related multiple elimination (SRME) has gained the interest of the geophysical community, primarily for three reasons:SRME provides a theoretically correct solution to the prediction of multiples, and can therefore take into account the full complexity of the earth;SRME does not rely on any information about the subsurface, and only uses the data itself to predict and subtract multiples. As such, results are never biased towards any assumptions about the subsurface or to any a priori information provided by the user;SRME does not rely extensively on user interaction. As it relies much more on compute times, SRME can fully benefit from increased computational efficiency obtained from advances in computer technology." @default.
- W2019587480 created "2016-06-24" @default.
- W2019587480 creator A5034806018 @default.
- W2019587480 creator A5066718595 @default.
- W2019587480 creator A5073827649 @default.
- W2019587480 date "2004-05-03" @default.
- W2019587480 modified "2023-09-25" @default.
- W2019587480 title "True 3D Data-driven Multiple Removal: Acquisition & Processing Solutions" @default.
- W2019587480 doi "https://doi.org/10.4043/16945-ms" @default.
- W2019587480 hasPublicationYear "2004" @default.
- W2019587480 type Work @default.
- W2019587480 sameAs 2019587480 @default.
- W2019587480 citedByCount "0" @default.
- W2019587480 crossrefType "proceedings-article" @default.
- W2019587480 hasAuthorship W2019587480A5034806018 @default.
- W2019587480 hasAuthorship W2019587480A5066718595 @default.
- W2019587480 hasAuthorship W2019587480A5073827649 @default.
- W2019587480 hasConcept C111472728 @default.
- W2019587480 hasConcept C111919701 @default.
- W2019587480 hasConcept C11413529 @default.
- W2019587480 hasConcept C124101348 @default.
- W2019587480 hasConcept C127313418 @default.
- W2019587480 hasConcept C13280743 @default.
- W2019587480 hasConcept C138827492 @default.
- W2019587480 hasConcept C138885662 @default.
- W2019587480 hasConcept C154945302 @default.
- W2019587480 hasConcept C163985040 @default.
- W2019587480 hasConcept C164680029 @default.
- W2019587480 hasConcept C177264268 @default.
- W2019587480 hasConcept C187691185 @default.
- W2019587480 hasConcept C199360897 @default.
- W2019587480 hasConcept C202444582 @default.
- W2019587480 hasConcept C2778112365 @default.
- W2019587480 hasConcept C33923547 @default.
- W2019587480 hasConcept C41008148 @default.
- W2019587480 hasConcept C54355233 @default.
- W2019587480 hasConcept C58489278 @default.
- W2019587480 hasConcept C75553542 @default.
- W2019587480 hasConcept C79403827 @default.
- W2019587480 hasConcept C86803240 @default.
- W2019587480 hasConcept C94375191 @default.
- W2019587480 hasConcept C9652623 @default.
- W2019587480 hasConceptScore W2019587480C111472728 @default.
- W2019587480 hasConceptScore W2019587480C111919701 @default.
- W2019587480 hasConceptScore W2019587480C11413529 @default.
- W2019587480 hasConceptScore W2019587480C124101348 @default.
- W2019587480 hasConceptScore W2019587480C127313418 @default.
- W2019587480 hasConceptScore W2019587480C13280743 @default.
- W2019587480 hasConceptScore W2019587480C138827492 @default.
- W2019587480 hasConceptScore W2019587480C138885662 @default.
- W2019587480 hasConceptScore W2019587480C154945302 @default.
- W2019587480 hasConceptScore W2019587480C163985040 @default.
- W2019587480 hasConceptScore W2019587480C164680029 @default.
- W2019587480 hasConceptScore W2019587480C177264268 @default.
- W2019587480 hasConceptScore W2019587480C187691185 @default.
- W2019587480 hasConceptScore W2019587480C199360897 @default.
- W2019587480 hasConceptScore W2019587480C202444582 @default.
- W2019587480 hasConceptScore W2019587480C2778112365 @default.
- W2019587480 hasConceptScore W2019587480C33923547 @default.
- W2019587480 hasConceptScore W2019587480C41008148 @default.
- W2019587480 hasConceptScore W2019587480C54355233 @default.
- W2019587480 hasConceptScore W2019587480C58489278 @default.
- W2019587480 hasConceptScore W2019587480C75553542 @default.
- W2019587480 hasConceptScore W2019587480C79403827 @default.
- W2019587480 hasConceptScore W2019587480C86803240 @default.
- W2019587480 hasConceptScore W2019587480C94375191 @default.
- W2019587480 hasConceptScore W2019587480C9652623 @default.
- W2019587480 hasLocation W20195874801 @default.
- W2019587480 hasOpenAccess W2019587480 @default.
- W2019587480 hasPrimaryLocation W20195874801 @default.
- W2019587480 hasRelatedWork W1984508914 @default.
- W2019587480 hasRelatedWork W1999872030 @default.
- W2019587480 hasRelatedWork W2019587480 @default.
- W2019587480 hasRelatedWork W2086039137 @default.
- W2019587480 hasRelatedWork W2130967683 @default.
- W2019587480 hasRelatedWork W2160784510 @default.
- W2019587480 hasRelatedWork W2344963425 @default.
- W2019587480 hasRelatedWork W2353024843 @default.
- W2019587480 hasRelatedWork W2381123034 @default.
- W2019587480 hasRelatedWork W2909663118 @default.
- W2019587480 isParatext "false" @default.
- W2019587480 isRetracted "false" @default.
- W2019587480 magId "2019587480" @default.
- W2019587480 workType "article" @default.