Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019588894> ?p ?o ?g. }
- W2019588894 endingPage "458" @default.
- W2019588894 startingPage "436" @default.
- W2019588894 abstract "A functional for joint variational object segmentation and shape matching is developed. The formulation is based on optimal transport w.r.t. geometric distance and local feature similarity. Geometric invariance and modelling of object-typical statistical variations is achieved by introducing degrees of freedom that describe transformations and deformations of the shape template. The shape model is mathematically equivalent to contour-based approaches but inference can be performed without conversion between the contour and region representations, allowing combination with other convex segmentation approaches and simplifying optimization. While the overall functional is non-convex, non-convexity is confined to a low-dimensional variable. We propose a locally optimal alternating optimization scheme and a globally optimal branch and bound scheme, based on adaptive convex relaxation. Combining both methods allows to eliminate the delicate initialization problem inherent to many contour based approaches while remaining computationally practical. The properties of the functional, its ability to adapt to a wide range of input data structures and the different optimization schemes are illustrated and compared by numerical experiments." @default.
- W2019588894 created "2016-06-24" @default.
- W2019588894 creator A5059838227 @default.
- W2019588894 creator A5088815590 @default.
- W2019588894 date "2014-11-07" @default.
- W2019588894 modified "2023-10-18" @default.
- W2019588894 title "Globally Optimal Joint Image Segmentation and Shape Matching Based on Wasserstein Modes" @default.
- W2019588894 cites W126423635 @default.
- W2019588894 cites W1494018860 @default.
- W2019588894 cites W1807945657 @default.
- W2019588894 cites W1968333723 @default.
- W2019588894 cites W1985415289 @default.
- W2019588894 cites W2005276292 @default.
- W2019588894 cites W2012330712 @default.
- W2019588894 cites W202674608 @default.
- W2019588894 cites W2027258435 @default.
- W2019588894 cites W2027842533 @default.
- W2019588894 cites W2038495454 @default.
- W2019588894 cites W2042737998 @default.
- W2019588894 cites W2052424080 @default.
- W2019588894 cites W2055834603 @default.
- W2019588894 cites W2060945009 @default.
- W2019588894 cites W2094100343 @default.
- W2019588894 cites W2095444191 @default.
- W2019588894 cites W2097324202 @default.
- W2019588894 cites W2104358837 @default.
- W2019588894 cites W2113137767 @default.
- W2019588894 cites W2116901131 @default.
- W2019588894 cites W2124116628 @default.
- W2019588894 cites W2133921496 @default.
- W2019588894 cites W2140843581 @default.
- W2019588894 cites W2155697938 @default.
- W2019588894 cites W2168358734 @default.
- W2019588894 cites W2170167891 @default.
- W2019588894 cites W2222512263 @default.
- W2019588894 cites W2268577412 @default.
- W2019588894 cites W2296770417 @default.
- W2019588894 cites W2539033431 @default.
- W2019588894 cites W3106461079 @default.
- W2019588894 cites W4206302008 @default.
- W2019588894 cites W4233762729 @default.
- W2019588894 cites W4295632409 @default.
- W2019588894 cites W79680519 @default.
- W2019588894 doi "https://doi.org/10.1007/s10851-014-0546-8" @default.
- W2019588894 hasPublicationYear "2014" @default.
- W2019588894 type Work @default.
- W2019588894 sameAs 2019588894 @default.
- W2019588894 citedByCount "15" @default.
- W2019588894 countsByYear W20195888942016 @default.
- W2019588894 countsByYear W20195888942017 @default.
- W2019588894 countsByYear W20195888942018 @default.
- W2019588894 countsByYear W20195888942019 @default.
- W2019588894 countsByYear W20195888942020 @default.
- W2019588894 countsByYear W20195888942023 @default.
- W2019588894 crossrefType "journal-article" @default.
- W2019588894 hasAuthorship W2019588894A5059838227 @default.
- W2019588894 hasAuthorship W2019588894A5088815590 @default.
- W2019588894 hasBestOaLocation W20195888942 @default.
- W2019588894 hasConcept C105795698 @default.
- W2019588894 hasConcept C106159729 @default.
- W2019588894 hasConcept C112604564 @default.
- W2019588894 hasConcept C112680207 @default.
- W2019588894 hasConcept C11413529 @default.
- W2019588894 hasConcept C114466953 @default.
- W2019588894 hasConcept C121332964 @default.
- W2019588894 hasConcept C124504099 @default.
- W2019588894 hasConcept C126255220 @default.
- W2019588894 hasConcept C129641003 @default.
- W2019588894 hasConcept C138885662 @default.
- W2019588894 hasConcept C153180895 @default.
- W2019588894 hasConcept C154945302 @default.
- W2019588894 hasConcept C157972887 @default.
- W2019588894 hasConcept C162324750 @default.
- W2019588894 hasConcept C165064840 @default.
- W2019588894 hasConcept C199360897 @default.
- W2019588894 hasConcept C208081375 @default.
- W2019588894 hasConcept C2524010 @default.
- W2019588894 hasConcept C2776401178 @default.
- W2019588894 hasConcept C33923547 @default.
- W2019588894 hasConcept C41008148 @default.
- W2019588894 hasConcept C41895202 @default.
- W2019588894 hasConcept C62520636 @default.
- W2019588894 hasConcept C72134830 @default.
- W2019588894 hasConcept C89600930 @default.
- W2019588894 hasConcept C97686452 @default.
- W2019588894 hasConceptScore W2019588894C105795698 @default.
- W2019588894 hasConceptScore W2019588894C106159729 @default.
- W2019588894 hasConceptScore W2019588894C112604564 @default.
- W2019588894 hasConceptScore W2019588894C112680207 @default.
- W2019588894 hasConceptScore W2019588894C11413529 @default.
- W2019588894 hasConceptScore W2019588894C114466953 @default.
- W2019588894 hasConceptScore W2019588894C121332964 @default.
- W2019588894 hasConceptScore W2019588894C124504099 @default.
- W2019588894 hasConceptScore W2019588894C126255220 @default.
- W2019588894 hasConceptScore W2019588894C129641003 @default.
- W2019588894 hasConceptScore W2019588894C138885662 @default.
- W2019588894 hasConceptScore W2019588894C153180895 @default.
- W2019588894 hasConceptScore W2019588894C154945302 @default.