Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019604350> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2019604350 endingPage "184" @default.
- W2019604350 startingPage "145" @default.
- W2019604350 abstract "(1) U JOGD= Du JOG= = Dm'UIaG = 0, where A is a real number and f(t, x) is a real-valued function defined on R' x G with f (0, x) 0. Iff (u, x) u, the study of the boundary value problem (1) forms the foundation of the spectral analysis of A, a problem of great importance both in mathematics and its applications. If f(u, x) does not depend on u in a linear manner, one enters the relatively uncharted world of nonlinear functional analysis. We shall be concerned with the existence of real-valued nontrivial solutions of (1), i.e. eigenfunctions. There are basically two different approaches to such nonlinear existence problems: first the methods of fixed point theory and other topological principles used with success in the study of elliptic partial differential equations since the pioneering work of S. Bernstein and J. Schauder; second the variational method, dating back to Gauss, Dirichlet and Riemann, and currently, in combination with the new methods of Sobolev spaces, undergoing a rapid development. Throughout this study we shall rely on this latter approach. For second order operators A, one of the first treatments of boundary value problems of the type considered here was given by A. Hammerstein [17], in 1930, as an application of his study of nonlinear integral equations. The approach used in this dissertation is based on a direct study of elliptic differential operators without recourse to integral equations and Green's functions. By focusing attention on the so-called generalized solutions of (1), we are able to use a variety of Hilbert spaces in our study and to eliminate the auxiliary analytic machinery of a priori estimates, and smoothness properties on the domain G. The following questions will occupy our attention in this study. (i) (Existence Problem). Under what restrictions on the function f(t, x) does" @default.
- W2019604350 created "2016-06-24" @default.
- W2019604350 creator A5034066893 @default.
- W2019604350 date "1965-01-01" @default.
- W2019604350 modified "2023-09-24" @default.
- W2019604350 title "An eigenvalue problem for nonlinear elliptic partial differential equations" @default.
- W2019604350 cites W1997935089 @default.
- W2019604350 cites W2009817621 @default.
- W2019604350 cites W2014540951 @default.
- W2019604350 cites W2022970844 @default.
- W2019604350 cites W2023585655 @default.
- W2019604350 cites W2038845632 @default.
- W2019604350 cites W2066370962 @default.
- W2019604350 cites W2073370369 @default.
- W2019604350 cites W2084217877 @default.
- W2019604350 cites W2119665385 @default.
- W2019604350 cites W2176867819 @default.
- W2019604350 cites W2229955524 @default.
- W2019604350 cites W2312895447 @default.
- W2019604350 cites W4232776877 @default.
- W2019604350 cites W4254569939 @default.
- W2019604350 cites W802720919 @default.
- W2019604350 doi "https://doi.org/10.1090/s0002-9947-1965-0181821-3" @default.
- W2019604350 hasPublicationYear "1965" @default.
- W2019604350 type Work @default.
- W2019604350 sameAs 2019604350 @default.
- W2019604350 citedByCount "19" @default.
- W2019604350 countsByYear W20196043502016 @default.
- W2019604350 countsByYear W20196043502020 @default.
- W2019604350 crossrefType "journal-article" @default.
- W2019604350 hasAuthorship W2019604350A5034066893 @default.
- W2019604350 hasBestOaLocation W20196043501 @default.
- W2019604350 hasConcept C121332964 @default.
- W2019604350 hasConcept C134306372 @default.
- W2019604350 hasConcept C158622935 @default.
- W2019604350 hasConcept C158693339 @default.
- W2019604350 hasConcept C24902271 @default.
- W2019604350 hasConcept C28826006 @default.
- W2019604350 hasConcept C33923547 @default.
- W2019604350 hasConcept C54067925 @default.
- W2019604350 hasConcept C62520636 @default.
- W2019604350 hasConcept C64057670 @default.
- W2019604350 hasConcept C70915906 @default.
- W2019604350 hasConcept C93779851 @default.
- W2019604350 hasConceptScore W2019604350C121332964 @default.
- W2019604350 hasConceptScore W2019604350C134306372 @default.
- W2019604350 hasConceptScore W2019604350C158622935 @default.
- W2019604350 hasConceptScore W2019604350C158693339 @default.
- W2019604350 hasConceptScore W2019604350C24902271 @default.
- W2019604350 hasConceptScore W2019604350C28826006 @default.
- W2019604350 hasConceptScore W2019604350C33923547 @default.
- W2019604350 hasConceptScore W2019604350C54067925 @default.
- W2019604350 hasConceptScore W2019604350C62520636 @default.
- W2019604350 hasConceptScore W2019604350C64057670 @default.
- W2019604350 hasConceptScore W2019604350C70915906 @default.
- W2019604350 hasConceptScore W2019604350C93779851 @default.
- W2019604350 hasIssue "1" @default.
- W2019604350 hasLocation W20196043501 @default.
- W2019604350 hasOpenAccess W2019604350 @default.
- W2019604350 hasPrimaryLocation W20196043501 @default.
- W2019604350 hasRelatedWork W2003672595 @default.
- W2019604350 hasRelatedWork W2018387453 @default.
- W2019604350 hasRelatedWork W2034293349 @default.
- W2019604350 hasRelatedWork W2063425968 @default.
- W2019604350 hasRelatedWork W2064114072 @default.
- W2019604350 hasRelatedWork W2065775687 @default.
- W2019604350 hasRelatedWork W2123186262 @default.
- W2019604350 hasRelatedWork W2272074809 @default.
- W2019604350 hasRelatedWork W2555200818 @default.
- W2019604350 hasRelatedWork W39293662 @default.
- W2019604350 hasVolume "120" @default.
- W2019604350 isParatext "false" @default.
- W2019604350 isRetracted "false" @default.
- W2019604350 magId "2019604350" @default.
- W2019604350 workType "article" @default.