Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019630042> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2019630042 endingPage "1271" @default.
- W2019630042 startingPage "1261" @default.
- W2019630042 abstract "A problem which has received considerable attention in recent years is that of estimating the tail probability in a distribution belonging to a specified family. Kolmogorov (1950), Lieberman and Resnikoff (1955), and Healy (1956) obtained the unique minimum variance unbiased (UMVU) estimator of $P{x > c}$, where $x$ has a normal distribution with unknown mean and variance; they used the Rao-Blackwell theorem for this purpose. Washio, Morimoto and Ikeda (1956) used integral transform theory to study the Koopman-Pitman family. Barton (1961) provided UMVU estimators of the normal, Poisson and binomial distribution functions. The most extensive study is that by Tate (1959) who obtained the UMVU estimators for the cdf (and other functionals) for several probability densities; this was accomplished by using transform theory. In the context of reliability theory, Glasser (1962) estimated the tail of the exponential distribution and Basu (1964) that of the gamma distribution; other related work in the area of reliability theory is that of Rutemiller (1966), and Zacks and Even (1966). Non-parametric estimation of probability densities has been treated by Rosenblatt (1956), Parzen (1962), Lead-better and Watson (1963), and Weiss and Wolfowitz (1967). The more general problem of estimating $Ef(x)$, where $f$ is any given function, was considered by Neyman and Scott (1960) and Schmetterer (1961) in the case that $x$ has a normal distribution with unknown mean and variance. Schmetterer's solution really consists in obtaining the UMVU estimator of the density and then integrating the product of this estimate and $f$. That this procedure is of wider applicability is seen from the following result." @default.
- W2019630042 created "2016-06-24" @default.
- W2019630042 creator A5013693751 @default.
- W2019630042 creator A5047610493 @default.
- W2019630042 date "1969-08-01" @default.
- W2019630042 modified "2023-09-30" @default.
- W2019630042 title "Unbiased Estimation of Some Multivariate Probability Densities and Related Functions" @default.
- W2019630042 cites W1551363936 @default.
- W2019630042 cites W1964047829 @default.
- W2019630042 cites W1997474053 @default.
- W2019630042 cites W1999002686 @default.
- W2019630042 cites W2012821007 @default.
- W2019630042 cites W2014268383 @default.
- W2019630042 cites W2018725396 @default.
- W2019630042 cites W2020224930 @default.
- W2019630042 cites W2022184054 @default.
- W2019630042 cites W2025392487 @default.
- W2019630042 cites W2088484188 @default.
- W2019630042 cites W2091436557 @default.
- W2019630042 cites W2118020555 @default.
- W2019630042 cites W2222224277 @default.
- W2019630042 cites W2798198027 @default.
- W2019630042 doi "https://doi.org/10.1214/aoms/1177697501" @default.
- W2019630042 hasPublicationYear "1969" @default.
- W2019630042 type Work @default.
- W2019630042 sameAs 2019630042 @default.
- W2019630042 citedByCount "52" @default.
- W2019630042 countsByYear W20196300422013 @default.
- W2019630042 countsByYear W20196300422015 @default.
- W2019630042 countsByYear W20196300422016 @default.
- W2019630042 countsByYear W20196300422017 @default.
- W2019630042 countsByYear W20196300422018 @default.
- W2019630042 countsByYear W20196300422019 @default.
- W2019630042 countsByYear W20196300422020 @default.
- W2019630042 countsByYear W20196300422022 @default.
- W2019630042 crossrefType "journal-article" @default.
- W2019630042 hasAuthorship W2019630042A5013693751 @default.
- W2019630042 hasAuthorship W2019630042A5047610493 @default.
- W2019630042 hasBestOaLocation W20196300421 @default.
- W2019630042 hasConcept C100906024 @default.
- W2019630042 hasConcept C105795698 @default.
- W2019630042 hasConcept C165646398 @default.
- W2019630042 hasConcept C185429906 @default.
- W2019630042 hasConcept C196323059 @default.
- W2019630042 hasConcept C197055811 @default.
- W2019630042 hasConcept C28826006 @default.
- W2019630042 hasConcept C33923547 @default.
- W2019630042 hasConcept C55974624 @default.
- W2019630042 hasConceptScore W2019630042C100906024 @default.
- W2019630042 hasConceptScore W2019630042C105795698 @default.
- W2019630042 hasConceptScore W2019630042C165646398 @default.
- W2019630042 hasConceptScore W2019630042C185429906 @default.
- W2019630042 hasConceptScore W2019630042C196323059 @default.
- W2019630042 hasConceptScore W2019630042C197055811 @default.
- W2019630042 hasConceptScore W2019630042C28826006 @default.
- W2019630042 hasConceptScore W2019630042C33923547 @default.
- W2019630042 hasConceptScore W2019630042C55974624 @default.
- W2019630042 hasIssue "4" @default.
- W2019630042 hasLocation W20196300421 @default.
- W2019630042 hasOpenAccess W2019630042 @default.
- W2019630042 hasPrimaryLocation W20196300421 @default.
- W2019630042 hasRelatedWork W1586415191 @default.
- W2019630042 hasRelatedWork W1988224349 @default.
- W2019630042 hasRelatedWork W2018988195 @default.
- W2019630042 hasRelatedWork W2028334336 @default.
- W2019630042 hasRelatedWork W2057060095 @default.
- W2019630042 hasRelatedWork W2916573351 @default.
- W2019630042 hasRelatedWork W2924280721 @default.
- W2019630042 hasRelatedWork W4240075767 @default.
- W2019630042 hasRelatedWork W4254263648 @default.
- W2019630042 hasRelatedWork W4293568347 @default.
- W2019630042 hasVolume "40" @default.
- W2019630042 isParatext "false" @default.
- W2019630042 isRetracted "false" @default.
- W2019630042 magId "2019630042" @default.
- W2019630042 workType "article" @default.